期刊文献+

基于边缘交点聚类法的眼底图视盘轮廓提取 被引量:1

Optic Disc Contour Extraction from Retinal Images Based on Edge Intersect Points Clustering
下载PDF
导出
摘要 由于眼底血管闭塞、噪声和弱边界等原因,主动轮廓模型不能够精确地收缩至视盘的轮廓边缘,由此提出基于边缘交点聚类的轮廓提取方法。由初始轮廓确定一个矩形区域,选取该矩形区域的主对角线、副对角线、垂直中心线和水平中心线,求其与视盘边缘的交点,将所有候选交点进行K-Means聚类分析,取得位于边缘附近的点作为主动轮廓模型的初始轮廓点,进行能量最小化计算,直至轮廓停止收缩。实验证明,经边缘交点聚类初始化后再运用主动轮廓进行视盘边缘提取,轮廓最终会较为精确地收缩于视盘边缘。 The active contour model can not converge to the optic disc boundary precisely because of the retinal vascu- lar occlusion,noise and weak boundaries and so on,so a contour extraction method is proposed based on clustering of the edge intersect points. First, a rectangle was determined by the initial contour,and then the principle diagonal, vice diagonal, vertical center line and horizontal center line were selected to compute their intersect points with the optic disc boundary,which were then clustered by K-Means algorithm, with the points around the optic disc boundary as the initial contour of the active contour model obtained. Second, the energy was minimized until the contour stopped converging. The experiment shows that after initialization by the edge intersect points, the optic disc boundary ex- traction by the active contour model is more precise and efficient.
出处 《山东科技大学学报(自然科学版)》 CAS 2013年第5期90-95,共6页 Journal of Shandong University of Science and Technology(Natural Science)
基金 山东省自然科学基金项目(ZR2011FM035) 山东省软科学计划项目(2012RKB01104) 山东省教育厅计划项目(J11LG14)
关键词 主动轮廓模型 边缘交点 K-MEANS聚类 能量最小化 眼底图 active contour model, edge intersect points K-Means energy minimization the retinal images
  • 相关文献

参考文献8

  • 1Kass M, Witkin M, Terzopoulos D. Snakes .. active contour models[J. International Journal of Vision, 1987 ( 1 ) : 321-331.
  • 2Mclnerney T, Terzopoulos D. Deformable models in medical image analysis[J 1. Medical Image Analysis, 1996 ( 1 ) : 91-108.
  • 3Bamford P,Lovell B. Unsupervised cell nucleus segmentation with active contours[J. Signal Processing.Special Issue.. De- formable Models and Techniques for Image and Signal Processing, 1998 ( 71 ) : 203- 213.
  • 4Cohen L. On active contour models and balloons[J]. Graphics and Image Processing : Image Understanding, 1989 ( 53 ) .. 211- 218.
  • 5Cohen L. Finite-element methods for active contour models and balloons for 2-D and 3 D imagesJ. IEEE. Transactions onPattern Analysis and Machine Intelligence, 1993,15(11) :1131-1147.
  • 6Xu C,Pham D. Rettmann M. Reconstruction of the human cerebral cortex from magnetic resonance images[J]. IEEE Tran- sactions on Medical Imaging, 1999 (18) : 467-479.
  • 7Yu Z Y,Bajaj C. Image segmentation using gradient vector diffusion and region merging[C]//16th International Conference on Pattern Recognition. Quebec City, Aug. 11-12,2002 : 828-831.
  • 8K im H,Lee Y, Chung B, et a l. Digital rights management with right delegation for home networks[C]//gth International Conference on Information Security and Cryptology. Berlin-Heidelberg : Springer, 2006 : 233-245.

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部