期刊文献+

SiO_2微悬臂梁制备及其高阶谐振的传感器研究 被引量:3

Fabrication of SiO_2 micro-cantilever and its sensor application based on higher resonance modes
原文传递
导出
摘要 为了提高SiO2微悬臂梁动态检测灵敏度,对T型SiO2微悬臂梁的制备和高阶谐振模态传感器进行了研究。以绝缘体上Si(SOI)为起始材料制备了不同长度T型SiO2微悬臂梁,利用原子力显微镜(AFM)中精密的光学位置敏感检测器及数据处理系统对其频率进行表征,获得了与仿真结果相一致的数据。基于高阶谐振模态的免疫反应结果表明,对于相同的质量变化量,微悬臂梁的弯曲振动模式阶数越高,其频率偏移越大,从而达到较高的灵敏度;实验制备的SiO2微悬臂梁前三阶弯曲振动模式的检测灵敏度分别为1.36、9.78和26.92Hz/pg,利用二阶弯曲振动模式可检测出21.5pg的分子吸附。 SiO2micro-cantilever has been widely used in the field of chemical and biolo gical sensors due to its high sensitivity.In order to further improve the dynamic sensitivity of SiO2micro -cantilevers,the fabrication and its sensor application based on higher resonance modes are studied in this work.First,Silicon-on-insulator (SOI) is used as starting material for the fabrication of T-shaped SiO2micro-ca ntilevers with different lengths.Then,commercial atom force microscopy (AFM) wit h accurate photoelectron ic system is employed for the characterization of the frequency and the frequency shift before and after mass adsorption.It is found that the first three bending frequencies of the T-shaped SiO2micro-cantilevers with total length of 250μm are 18.86kHz,164.27kHz and 467.25kHz,respectively,which are well consistent with the simulated values.More over,for the same amount of mass change,the higher the flexural resonance mode is,the larger the frequency shift of the micro-cantilever will be,showing an increasing sensitivity.The frequency measur ement of gold deposition reveals that the sensitivities of the first three modes are 1.36Hz/pg,9.78Hz/pg and 26.92Hz/pg,respectively.Immunological reactions are also conducted.It is found that at the second harmonic,a 21.5pg m ass absorption can be detected.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第11期2055-2059,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61306071) 福建省教育厅项目(JK2012001)资助项目
关键词 SiO2微悬臂梁 绝缘体上Si(SOI) 高阶谐振模态 免疫反应 SiO2 micro-cantilever Si-on-insulator (SOI) higher resonance mode immunological reaction
  • 相关文献

参考文献16

  • 1Canetta C,Narayanaswamy A. Sub-picowatt resolution calorimetry with a bi-material microcantilever sensor[J]. Appl. Phys. Left. , 2013,102 : 103112-103115.
  • 2Maroufi M, Zihajehzadeh S, Shamshirsaz M,et al. Effect of thermal and mechanical properties variations on micro- cantilever mass sensor performance[J]. Microsyst. Tech- nol, ,2011,17:575-583.
  • 3Wang P, Pei H, Wan Y,et al. Nanomechanical identifica- tion of proteins using microcantilever-based chemicalsensors[J]. Nanoscale, 2012,4 : 6739-6742.
  • 4YIN Tsung, ZHAO Yun-peng, Horak Josef, et al. A micro- cantilever sensor chip based on contact angle analysis for a label-free troponin I immunoassay [J]. Lab Chip., 2013,13(5) .. 834-842.
  • 5WANG Hong-liang, ZHOU Hao-qiang, GAO Hong, et al. Fi- ber grating acceleration vibration sensor with double uni- form strength cantilever beams[J] Journal of Optoelec- tronics : Laser, 2008,24(4) : 636-641.
  • 6MENG Zhan,CHEN Rui-xia, JIN He, et al. FBGstrain and temperature sensor based on double-material cantilever beam[J] Journal of Optoelectronics : Laser, 2011,22 (3) ..343-346.
  • 7Samira F, Nader J,Srinivas S. A self-sensing piezoelec- tric micro-cantilever biosensor for detection of ultrasmall adsorbed masses: theory and experiments [J] . Sensor, 2013,13 : 6089-6108.
  • 8Gupta A,Akin D,Bashir R. Single virus particle mass de- tection using microresonators with nanoscale thickness[J] Appl. Phys. Lett. ,2004,84(11) ,1976-1978.
  • 9Ono T, LI X X, Miyashita H, et al. Mass sensing of ad- sorbed molecules in sub-picogram sample with ultra thin silicon resonator [J]. Rev. Sci. Instrum., 2003,74 (3) .. 1240.
  • 10Lu J, Ikehara T,Zhang Y, et al. High quality factor silicon cantilever driven by piezoelectric thin film actuator forresonant based mass detection[J]. Microsyst Technol., 2009,15: 1163-1169.

二级参考文献11

  • 1林晓峰,章海军,张冬仙,黄峰.液相型AFM的研制与金属腐蚀原位研究[J].光电子.激光,2006,17(5):638-640. 被引量:4
  • 2邵军,刘君华,乔学光,贾振安,王宏亮,周红.基于弹簧管悬臂梁的FBG压力传感的研究[J].光电子.激光,2006,17(7):807-809. 被引量:19
  • 3Hansen K M,Thundat T.Microcantilever biosensors[J].Methods,2005,37:57-64.
  • 4Sepaniak M,Datskos P,Lavrik N,et al.Microcantilever transducers:A new approach in sensor technology[J].Anal Chem,2002,74(21):568-575.
  • 5Ming S,Li S,Dravid V P.Microcantilever resonance-based DNA detection with nanoparticle probes[J].Appl Phys Lett,2003,82(5):3562-3564.
  • 6Butt H J,Colloid J.A sensitive method to measure changes in the surface stress of solids[J].Interface Sci,1996,180:251-260.
  • 7Moulin A M,Oshea S J,Welland M E.Microcantilever-based biosensors[J].Ultramicroscopy,2000,82:23-31.
  • 8Rabe U,Janser K,Arnold W.Vibrations of free and surface-coupled atomic force microscopy cantilevers:theory and experiment[J].Rev Sci Instrum,1996,67:3281-3293.
  • 9Sader J E.Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[J].J Appl Phys,1998,84:64-76.
  • 10Cleveland J P,Anczykowski B,Schmid A E,et al.Energy dissipation in tapping-mode atomic force microscopy[J].Appl Phys Lett,1998,72:2613-2615.

共引文献4

同被引文献129

  • 1黄玉波,栗大超,胡小唐,傅星,张文栋,胡春光.测量微悬臂梁曲率的相移显微干涉法[J].光学精密工程,2007,15(9):1398-1403. 被引量:6
  • 2Sumesh M A, Karanth S, Prakash S, et al. Ion beam sput- tered Ge-Si-O amorphous thin films for microbolometer infrared detectors and their application in earth sensors [J]. Sensors and Actuators A: Physical, 2013, 192 : 81-91.
  • 3Wood R A. Uncooled thermal imaging with monolithic sili- con focal planes. Proc. SPIE-Infrared Technology XlX, 1993,2020 : 322-329.
  • 4WANG Jia-qi, TANG Zhe-nan, LI Jin-feng, et al. A micro pirani pressure sensor based on the tungsten microhot-plate in a standard CMOS process[J]. IEEE Transactions on Industrial Electronics,2009,56(4) :1086-1091.
  • 5OU Yi, L I Zhi-gang, DONG Feng-liang, et al. Design, fabri- cation,and characterization of a 240 X240 MEMS un- cooled infrared focal plane array with 42 IJm pitch pixels [J]. Journal of Microelectromechanical Systems, 2013,22 (2) ,452-461.
  • 6Tohyama S,Miyoshi M,Kurashina S,et al. New thermally isolated pixel structure for high-resolution (640 X 480) uncooled infrared focal plane arrays [J]. Optical Engi- neering,2006,45(1):014001.
  • 7LI C, Skidmore G, Howard C, et al. Advancement in 17 micron pixel pitch uncooled focal plane arrays[A]. Proc. of SPIEl-C]. 2009,7298 : 72980S-1-11.
  • 8Murphy D,Ray M,Wyles J,et al. 640X512 17 JJm mi- crobolometer FPA and sensor development[A]. Proc. of SPIE[C]. 2007,6542 : 65421Z-1-10.
  • 9Binnig G, Quate C F, Gerber C. Phys. Rev. Lett., 1986, 56 (9): 930.
  • 10Muller D J, Dufrene Y F. Trends Cell Biol., 2011, 21(8): 461.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部