期刊文献+

基于H∞滤波的远距离干扰下的目标跟踪算法

Target tracking algorithm in standoff jammer using H infinity filter
原文传递
导出
摘要 提出了一种加权和(WS)-H∞滤波算法实现远距离干扰机(SOJ)环境下的目标跟踪。算法通过使用合适的传感器模型和高斯和(GS)似然函数,充分利用了干扰信息从而提高没有量测时的跟踪精度;同时针对干扰环境下的量测和干扰信息的统计分布不确定的特点,采用WS-H∞滤波算法提高整个跟踪系统的鲁棒性。仿真证明,WS-H∞滤波算法在量测噪声和干扰估计不准确时表现出了良好的鲁棒性,其航迹连续性和跟踪精度都明显优于GS扩展卡尔曼(GS-EKF)滤波算法,而计算复杂度却没有明显提高。 A weighted sum (WS) H infinity (H∞) filter algorithm is proposed for target tr acking in the standoff jammer (SOJ).The algorithm takes full use of the jamming information by using an appropriate sensor model and Gau ssian sum likelihood function to improve the tracking accuracy when no measurement is received.Meanwhile,the H∞ infinity filter is a dopted to improve the robustness of the entire tracking system,accounting for the statistical distribution uncertainty of the measureme nt and the jamming information.Simulation results show that the weighted sum H infinity filter exerts good robustness when the assumpti ons of the measurement noise and the jamming estimation error are inaccurate,and its tracking continuity and tracking accuracy are signi ficantly superior to those of Gaussian sum extended Kalman filter without obviou s increase in computation complexity.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第11期2212-2217,共6页 Journal of Optoelectronics·Laser
关键词 目标跟踪 远距离干扰机(SOJ) 加权和(WS)-H∞滤波 鲁棒性 target tracking standoff jammer (SOJ) weighted sum (WS)-H∞ filter robustness
  • 相关文献

参考文献2

二级参考文献14

  • 1王国宏,钟晓军.有源压制性干扰下的机载多传感器管理[J].电光与控制,2004,11(3):1-4. 被引量:1
  • 2杜东平,唐斌.基于频域对消的噪声调幅干扰抑制算法[J].电子与信息学报,2007,29(3):557-559. 被引量:18
  • 3宋小全,孙仲康.组网雷达在干扰条件下的目标跟踪[J].现代雷达,1997,19(2):12-19. 被引量:5
  • 4Schleher D C. Electronic warfare in the information age [ M ]. Boston London : Artech House, 1999 : 139.
  • 5Kirubarajan T, Bar-Shalom Y, Blair W D, et al. IMMPDAF for radar management and tracking benchmark with ECM [J]. IEEE Transaction on Aerospace and Electronic Systems, 1998,34 (4) : 1115 - 1132.
  • 6Blair W D, Watson G A,Kirubarajan T, et al. Benchmark for radar allocation and tracking in ECM [ J]. IEEE Transactions on Aerospace and Electronic Systems, 1998,34 (4) : 1097 - 1114.
  • 7Blanding W, Koch W, Nickel U. Tracking through jamming using negative information [ C ] //9th International Conference on Information Fusion. Florence, Italy, Piscalaway, N J: IEEE Service Center, 2006 : 1 - 8.
  • 8Wang G H, Bai J, He Y, et al. Optimal development of muhiple passive sensors in the sense of minimum concentration ellipse [J]. IET Radar Sonar Navig,2009,2 ( 3 ) : 8 - 17.
  • 9Ristic R,Arulampalam S, Gordon N. Beyond the Kalman filterparticle filters for tracking applications [ M ]. Boston-London : Artech House ,2004.
  • 10Blackman S S,Popoli R. Dsigen and analysis of modem tradcking systems [ M ]. Boston London : Artech House, 1999 : 1075.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部