期刊文献+

高速公路常发拥堵路段追尾事故风险实时预测 被引量:4

Real-time prediction of rear-end crashes near freeway recurrent bottlenecks
下载PDF
导出
摘要 研究了个体车辆遇到运动波(Kinematic waves)前后行驶轨迹的特征,分析了追尾事故发生条件,将多个车辆轨迹进行集计分析,提出了基于集计交通流数据的追尾事故风险预测模型。结果表明:运动波传播过程中追尾事故概率与事故风险指数及上游占有率标准差显著相关;采用模型对实际高速公路常发拥堵路段追尾事故的预测结果符合真实情况;交通流由自由流转向拥堵过程中追尾事故风险最大,拥堵中运动波的传播会增加追尾事故风险。 To predict the real-time collision risk for rear-end crashes at freeway recurrent bottlenecks, in this study, the features of trajectories of individual vehicles when encountering kinematic waves were investigated, the collision conditions were analyzed, aggregate analysis of the trajectories of multiple vehicles was conducted. Then a model to predict the collision risks was developed using aggregated traffic flow data. Results show that the rear-end collision probability during propagation of kinematic waves was significantly related to the collision risk index and standard deviation of upstream occupancy. The model was used to predict the collisions in the bottleneck section of a real-world freeway; the predictions were consistent with observations. The highest collision risk occurs when traffic changes from free-flow to congested states. The propagation of kinematic waves in congested traffic also increases the rear-end collision risk.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第6期1482-1487,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 '863'国家高技术研究发展计划项目(2011AA110303 2012AA112304) '973'国家重点基础研究发展计划项目(2012CB725400) 东南大学优秀博士学位论文基金项目(YBPY1211)
关键词 交通运输安全工程 追尾事故 实时预测 常发拥堵 运动波 traffic safety engineering rear-end collision real-time prediction recurrent congestion kinematic wave
  • 相关文献

参考文献18

  • 1I)aganzo C F. Fundamentals of Transportation and Traffic Operations[M]. ()xford: Pergamon Press, 1997.
  • 2Abdel-Aty M, Uddin N, Pande A. Splil models forpredicting multivehiele crashes during high-speed and low-speed operating conditions on freeways[J]. Journal of the Transportation Research Board, 2005,1908.. 51-58.
  • 3AbdebAty M, Uddin N, Pande A, et al. Predicting freeway crashes from loop detector data by matched case-control logistic regression[J]. Journal of the Transportation Research Board, 2004, 1897.. 88-95.
  • 4Lee C, Hellinga B, Saccomanno F. Real-time-crash prediction model for application to crash prevention in freeway traffic[J] Journal of the Transportation Research Board, 2003,1840: 67-77.
  • 5Lee C, Saccomanno F, Hellinga B. Analysis of crash precursors on instrumented freeways [J]. Journal of the Transportation Research Board, 2002,1784: 1-8.
  • 6Zheng Z D, Ahn S, Monsere C M. Impact of traffic oscillations on freeway crash occurrences[J]. Acci- dent Analysis and Prevention, 2010, 42 (2) : 626- 636.
  • 7Oh C, Kim T. Estimation of rear-end crash potential using vehicle trajectory data[J] Accident Analysis and Prevention, 2010, 42(6).. 1888-1893.
  • 8Saccomanno F, Cunto F, Guido G, et al. Compa- ring safety at signalized intersections and round- abouts using simulated rear-end confliets[J]. Jour- nal of the Transportation Research Board, 2008, 2078: 90-95.
  • 9Oh C, Park S, Ritchie S G. A method for identif- ying rear-end collision risks using inductive loop de- tectors[J]. Accident Analysis and Prevention, 2006, 38(2) :295-301.
  • 10Oh C, Oh J, Min J. Real-time detection of hazard- aus traffic events on freeways methodology and pro- totypieal implementation[J]. Journal of the Trans- portation Research Board, 2009, 2129: 35-44.

同被引文献20

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部