期刊文献+

新型自适应非高斯接收机设计 被引量:2

New adaptive receiver for channels with non-Gaussian noise
下载PDF
导出
摘要 为了解决低频非高斯噪声信道下的信号传输问题,提出了一种新型的自适应接收机设计。通过设计马尔科夫链蒙特卡罗(MCMC)算法,并采用训练序列估计信道衰减系数和噪声模型参数,进而对信号进行检测。非高斯噪声模型选用了应用广泛的α稳定分布和高斯分布的混合模型。仿真结果表明:本文设计的自适应接收机能够逼近已知信道参数条件下的最优接收机的性能。 In order to detect signals in low frequency channels with non-Gaussian noise, a novel adaptive receiver is developed. A Markov Chain Monte Carlo (MCMC) algorithm is proposed to estimate the fading coefficients and the noise model parameters simultaneously using the training sequence; then the signal is estimated by the optimal decision rule. A commonly used model, which mixes the symmetric a distribution and the Gaussian distribution, is used to model the noise. Simulation results show that the performance of proposed adaptive receiver can approach that of the optimal receiver with known channel model parameters.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第6期1685-1689,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51109215)
关键词 通信技术 自适应接收机 非高斯噪声 马尔科夫链蒙特卡罗算法 大气噪声 communication adaptive receiver non-Gaussian noise Markov Chain Monte Carlo algorithm atmospheric noise
  • 相关文献

参考文献1

二级参考文献11

  • 1蒋宇中,胡修林,张曙霞.非高斯噪声中Turbo码的性能改进研究[J].应用科学学报,2006,24(4):336-340. 被引量:8
  • 2Abraham D A.Detection threshold approximation fornon-Gaussian backgrounds[J].IEEE Journal of OceanicEngineering,2010,35(8):335-341.
  • 3Goken C,Gezici S,and Arikan O.Optimal signaling anddetector design for power-constrained binary communicationssystems over non-Gaussian channels[J].IEEECommunications Letters,2010,14(2):100-102.
  • 4Rosado-Munoz A.FPGA implementation of an adaptivefilter robust to impulsive noise:two approaches[J].IEEETransactions on Industrial Electronics,2011,58(3):860-870.
  • 5Middleton D.Statistical-physical models of electromagneticinterference[J].IEEE Transactions on ElectromagnetCompact,1977,19(5):106-127.
  • 6Middleton D.Non-Gaussian noise models in signal processingfor telecommunications:new methods and results for Class Aand Class B noise models[J].IEEE Transactions onInformation Theory,1999,45(4):1129-1149.
  • 7Nikias C L and Shao M.Signal Processing with Alpha-StableDistribution and Applications[M].New York:Wiley,1995.
  • 8Khalil H K.Performance of an optimal receiver in thepresence of alpha-stable and Gaussian noises[J].IEEEStatistical Signal Processing Workshop(SSP),2011,56(8):573-576.
  • 9Welsh A H.Implementing empirical characteristic functionprocedures[J].Statistics and Probabilitys Letters,1986,4(7):65-67.
  • 10Chambers J M,Mallows C L,and Stuck B W.A method forsimulation stable random[J].Variables,Journal of AmericanStatistical Association,1976,71(5):340-344.

共引文献1

同被引文献1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部