摘要
基于第二类统计量,提出了估计对称稳定分布参数的有效方法。对累积分布函数求导数,获得对称稳定分布的绝对值的概率密度函数;对对称稳定分布的绝对值进行Mellin变换,推导出对称稳定分布的绝对值的第二类第一特征函数。由第二类第一特征函数推导出对称稳定分布的绝对值的前两阶对数累积量,可以估计对称稳定分布的参数。对数累积量估计拥有简洁的估计式,便于实现。参数估计实验结果表明,和传统的估计方法相比,该方法具有较高的估计性能,是对称稳定分布的高效参数估计方法。
Based on the second-kind statistics, an effective parameter estimator is proposed for the symmetric stable distribution. Taking the derivative on the cumulative distribution function, the probability density function of the absolute value of symmetric stable distribution is obtained firstly. Second, the Mellin tranSformation of the absolute value of symmetric stable distribution is employed, and the second-kind first characteristic function of the absolute value of symmetric stable distribution is derived. Last, the first two log-cumulants of the absolute value of symmetric stable distribution are derived from the second-kind first characteristic function for parameter estimation of symmetric stable distribution. With the compact estimation expressions, the log-cumulant estimator is easy to implement. Parameter estimation experiments demonstrate that, compared to the traditional estimators, the proposed estimator owns higher estimation performance, so it is the efficient parameter estimator of the symmetric stable distribution.
出处
《计算机工程与设计》
CSCD
北大核心
2013年第11期3929-3933,共5页
Computer Engineering and Design
基金
国家自然科学基金项目(61102163
60805021
61175121)
教育部新世纪优秀人才支持计划基金项目(NCET-10-0117)
福建省自然科学基金项目(2012J01271
2011J01349)
福建省高等学校杰出青年科研人才培育计划基金项目(JA10006)
华侨大学高层次人才科研启动费基金项目(11BS212)
关键词
对称稳定分布
第二类统计量
累积分布函数
Mellin变换
对数累积量估计
symmetric stable distribution
second-kind statistics
cumulative distribution function
Mellin transformation
logcumulant estimator