期刊文献+

对称稳定分布的对数累积量参数估计

Log-cumulant parameter estimator of symmetric stable distribution
下载PDF
导出
摘要 基于第二类统计量,提出了估计对称稳定分布参数的有效方法。对累积分布函数求导数,获得对称稳定分布的绝对值的概率密度函数;对对称稳定分布的绝对值进行Mellin变换,推导出对称稳定分布的绝对值的第二类第一特征函数。由第二类第一特征函数推导出对称稳定分布的绝对值的前两阶对数累积量,可以估计对称稳定分布的参数。对数累积量估计拥有简洁的估计式,便于实现。参数估计实验结果表明,和传统的估计方法相比,该方法具有较高的估计性能,是对称稳定分布的高效参数估计方法。 Based on the second-kind statistics, an effective parameter estimator is proposed for the symmetric stable distribution. Taking the derivative on the cumulative distribution function, the probability density function of the absolute value of symmetric stable distribution is obtained firstly. Second, the Mellin tranSformation of the absolute value of symmetric stable distribution is employed, and the second-kind first characteristic function of the absolute value of symmetric stable distribution is derived. Last, the first two log-cumulants of the absolute value of symmetric stable distribution are derived from the second-kind first characteristic function for parameter estimation of symmetric stable distribution. With the compact estimation expressions, the log-cumulant estimator is easy to implement. Parameter estimation experiments demonstrate that, compared to the traditional estimators, the proposed estimator owns higher estimation performance, so it is the efficient parameter estimator of the symmetric stable distribution.
作者 孙增国
出处 《计算机工程与设计》 CSCD 北大核心 2013年第11期3929-3933,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61102163 60805021 61175121) 教育部新世纪优秀人才支持计划基金项目(NCET-10-0117) 福建省自然科学基金项目(2012J01271 2011J01349) 福建省高等学校杰出青年科研人才培育计划基金项目(JA10006) 华侨大学高层次人才科研启动费基金项目(11BS212)
关键词 对称稳定分布 第二类统计量 累积分布函数 Mellin变换 对数累积量估计 symmetric stable distribution second-kind statistics cumulative distribution function Mellin transformation logcumulant estimator
  • 相关文献

参考文献13

  • 1WAN T, Canagarajah N, Achim A. Segmentation-driven image fusion based on alpha-stable modeling of wavelet coefficients [J]. IEEE Transactions on Multimedia, 2009, 11 (4):624-633.
  • 2Niranjayan S, Beaulieu N C. The BER optimal linear rake re ceiver for signal detection in symmetric alpha-stable noise [J]. IEEE Transactions on Communications, 2009, 57 (12): 3585-3588.
  • 3Salas-Gonzalez D, Kuruoglu E E, Ruiz D P. Modelling with mixture of symmetric stable distributions using Gibbs sampling [J]. Signal Processing, 2010, 90 (3): 774-783.
  • 4Chitre M A, Potter J R, Ong S H. Optimal and near-optimal signal detection in snapping shrimp dominated ambient noise [J]. IEEE Journal of Oceanic Engineering, 2006, 31 (2):497-503.
  • 5SUN Z G, HAN C Z. Stable distribution and parameter estimation [R]. IEICE Technical Report of Space, Aeronautical and Navigational Electronics, 2009: 207-212.
  • 6Ozbek M E, Cek M E, Savaci F A. Skewed alpha-stable distributions for modeling and classification of musical instruments [J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2012, 20 (6): 934-947.
  • 7Oral E, Erdemir C. A Bayesian estimation of stable distributions[J]. Journal of Statistical and Econometric Methods, 2012, 1 (3): 39-52.
  • 8Nassar M, Gulati K, Deyoung M R, et al. Mitigating near- field interference in laptop embedded wireless transceivers [J]. Journal of Signal Processing Systems, 2011, 63 (1) : 1-12.
  • 9Mahmood A, Chitre M, Armand M A. PSK communication with passband additive symmetric a-stable noise I-J]. IEEE Transactions on Communications, 2012, 60 (10): 2990-3000.
  • 10Rajan A, Tepedelenlioglu C. Diversity combining over Rayleigh fading channels with symmetric alpha-stable noise [J]. IEEE Transactions on Wireless Communications, 2010, 9 (9): 2968-2976.

二级参考文献19

  • 1姜可宇,蔡志明.变尺度概率净化法的优化[J].物理学报,2005,54(10):4596-4601. 被引量:4
  • 2宗晓萍,徐艳,董江涛.多信息融合的模糊边缘检测技术[J].物理学报,2006,55(7):3223-3228. 被引量:14
  • 3姜斌,王宏强,黎湘,郭桂蓉.海杂波背景下的目标检测新方法[J].物理学报,2006,55(8):3985-3991. 被引量:22
  • 4Oliver C, Quegan S 1998 Understanding Synthetic Aperture Radar Images (Boston: Artech House).
  • 5Wu Y G, Tao M D 2006 Chin. Phys. 15 1137.
  • 6Teng S Y, Cheng C F, Liu M, Gui W L, Xu Z Z 2005 Chin. Phys. 14 1990.
  • 7Anastassopoulos V, Lampropoulos G A, Drosopoulos A, Rey M 1999 IEEE Trans. Aerospace and Electronic Systems 35 43.
  • 8汪荣鑫.2003.数理统计.西安:西安交通大学出版社.
  • 9Papoulis A 1984 Probability, Random Variables, and Stochastic Processes (Singapore : McGraw-Hill).
  • 10Shao M, Nikias C L 1993 Proc. IEEE 81 986.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部