Robust reduction of graphene fluoride using an electrostatically biased scanning probe
Robust reduction of graphene fluoride using an electrostatically biased scanning probe
摘要
We report a novel and easily accessible method to chemically reduce graphene fluoride (GF) sheets with nanoscopic precision using high electrostatic fields generated between an atomic force microscope (AFM) tip and the GF substrate. Reduction of fluorine by the electric field produces graphene nanoribbons (GNR) with a width of 105-1,800 nm with sheet resistivity drastically decreased from 〉1 TΩ.sq.^-1 (GF) down to 46 kΩ.sq.^-1 (GNR). Fluorine reduction also changes the topography, friction, and work function of the GF. Kelvin probe force microscopy measurements indicate that the work function of GF is 180-280 meV greater than that of graphene. The reduction process was optimized by varying the AFM probe velocity between 1.2 μm.s^-1 and 12 μm.s^-1 and the bias voltage applied to the sample between -8 and -12 V. The electrostatic field required to remove fluorine from carbon is -1.6 V.nm-1. Reduction of the fluorine may be due to the softening of the C-F bond in this intense field or to the accumulation and hydrolysis of adventitious water into a meniscus.
我们报导一篇小说和容易可存取的方法化学上减少有用高静电的领域的 nanoscopic 精确的氟化物(GF ) 表在一台原子力量显微镜(AFM ) 之间产生了的 graphene 尖端和 GF 底层。由电场的氟的符号的减小急速地与表抵抗力与 105-1,800 nm 的宽度生产 graphene nanoribbons (GNR ) 减少了从 > 1 T ???????? ? ?
参考文献29
-
1Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evrnenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007,448,457-460.
-
2Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S.-Y.; Hu, Y.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C.; et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373- 1376.
-
3Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin,J.W.; Culbertson, J. c. Sheehan, P. E.: Snow, E. S. Properties of tluorinated graphene films. Nano Lett. 2010, 10,3001-3005.
-
4Nair, R. R.; Ren, W.; JaW, R.; Riaz, 1.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S. 1.; et al. Fluorographene: A two-dimensional counterpart of tetlon. Small 2010, 6, 2877-2884.
-
5Bagri, A.; Mattevi, c.; Acik, M.; Chahal, Y. J.; Chhowalla, M.; Shenoy, V. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010,2, 581-587.
-
6Lee, W.-H.; Suk, 1.-W.; Chou, H.; Lee, J.; Hao, Y. F.; Wu, Y. P.; Piner, R.; Akinwande, D.; Kim, K. S.; Rouff, R. S. Selective area .fluorination of graphene with fluoropolymer and laser irradiation. Nano Lett. 2012, 12,2374-2378.
-
7Sofo, J. 0.; Suarez, A. M.; Usaj, G.; Cornaglia, P. S.; Hernandez-Nieves, A.; Balseiro, C. A. Electrical control of the chemical bonding of fluorine on graphene. Phys. Rev. B 2011,83,081411.
-
8Jeon, K.-J.; Lee, Z.; Pollak, E.; Moreschini, L.; Bostwick, A.; Park, C.-M.; Mendelsberg, R.; Radrnilovic, V.; Kostecki, R.; Richardson, T. J.; et al. Fluorographene: A wide bandgap semiconductor with ultraviolet luminescence. ACS Nano 2011,5,1042-1046.
-
9Lee, W.-K.; Robinson, J. T.; Gunlycke, D.; Stine, R. R.; Tamanaha, C. R.; King, W. P.; Sheehan, P. E. Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks. Nano Lett. 2011, 11,5461-5464.
-
10Withers, F.; Bointon, T. H.; Dubois, M.; Russo, S.; Craciun, M. F. Nanopatterning of tluorinated graphene by electron beam irradiation. Nano Lett. 2011, 11, 3912-3916.
-
1张蒙蒙,谢凤,李斌.无机非金属固体润滑剂的摩擦学性能[J].合成润滑材料,2014,41(4):20-23. 被引量:2
-
2谢亚青.新型功能材料在机械工程中的应用[J].机械工程师,2005(10):127-129. 被引量:1
-
3征茂平,夏金童,顾明元,陈宗璋.氟化石墨的制备与研究[J].材料工程,1999,27(8):21-23. 被引量:1
-
4郑敏侠,辛芳,钟发春.氟化石墨粒度测试分散条件优化[J].中国粉体技术,2011,17(2):77-79.
-
5ZHANG Huifang,LIU min,YAN Long,YU Guojun,ZHOU Xingtai.Preparation and characterization of graphene nanoribbons[J].Nuclear Science and Techniques,2012,23(3):139-143.
-
6Young and Robust:Tianjin Institute of Industrial Biotechnology[J].Bulletin of the Chinese Academy of Sciences,2012,26(3):236-236.
-
7天津大学成功研制出高比能量氟化石墨烯材料[J].现代材料动态,2015,0(7):23-23.
-
8周明,薛澄岐,汤文成.基于使用方式的产品健壮设计研究[J].包装工程,2011,32(20):27-29. 被引量:1
-
9邹艳红,夏金童,周声劢.固相法合成氟化石墨与氟化碳新工艺的研究[J].湖南大学学报(自然科学版),2002,29(S1):107-111. 被引量:2
-
10张承龙.生活之美,瓷器之美,女人之美。——清赏张吟玲陶瓷艺术创作[J].陶瓷科学与艺术,2012,46(3):68-71.