期刊文献+

Robust reduction of graphene fluoride using an electrostatically biased scanning probe

Robust reduction of graphene fluoride using an electrostatically biased scanning probe
原文传递
导出
摘要 We report a novel and easily accessible method to chemically reduce graphene fluoride (GF) sheets with nanoscopic precision using high electrostatic fields generated between an atomic force microscope (AFM) tip and the GF substrate. Reduction of fluorine by the electric field produces graphene nanoribbons (GNR) with a width of 105-1,800 nm with sheet resistivity drastically decreased from 〉1 TΩ.sq.^-1 (GF) down to 46 kΩ.sq.^-1 (GNR). Fluorine reduction also changes the topography, friction, and work function of the GF. Kelvin probe force microscopy measurements indicate that the work function of GF is 180-280 meV greater than that of graphene. The reduction process was optimized by varying the AFM probe velocity between 1.2 μm.s^-1 and 12 μm.s^-1 and the bias voltage applied to the sample between -8 and -12 V. The electrostatic field required to remove fluorine from carbon is -1.6 V.nm-1. Reduction of the fluorine may be due to the softening of the C-F bond in this intense field or to the accumulation and hydrolysis of adventitious water into a meniscus. 我们报导一篇小说和容易可存取的方法化学上减少有用高静电的领域的 nanoscopic 精确的氟化物(GF ) 表在一台原子力量显微镜(AFM ) 之间产生了的 graphene 尖端和 GF 底层。由电场的氟的符号的减小急速地与表抵抗力与 105-1,800 nm 的宽度生产 graphene nanoribbons (GNR ) 减少了从 > 1 T ???????? ? ?
出处 《Nano Research》 SCIE EI CAS CSCD 2013年第11期767-774,共8页 纳米研究(英文版)
关键词 graphene fluoride GRAPHENE electrostatic lithography Kelvin force probemicroscopy atomic force microscopy-based electrostaticnanolithography(AFMEN) 氟化石墨 扫描探针 静电场 原子力显微镜 健壮 化学还原 还原过程 偏置电压
  • 相关文献

参考文献29

  • 1Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evrnenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007,448,457-460.
  • 2Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S.-Y.; Hu, Y.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C.; et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373- 1376.
  • 3Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin,J.W.; Culbertson, J. c. Sheehan, P. E.: Snow, E. S. Properties of tluorinated graphene films. Nano Lett. 2010, 10,3001-3005.
  • 4Nair, R. R.; Ren, W.; JaW, R.; Riaz, 1.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S. 1.; et al. Fluorographene: A two-dimensional counterpart of tetlon. Small 2010, 6, 2877-2884.
  • 5Bagri, A.; Mattevi, c.; Acik, M.; Chahal, Y. J.; Chhowalla, M.; Shenoy, V. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010,2, 581-587.
  • 6Lee, W.-H.; Suk, 1.-W.; Chou, H.; Lee, J.; Hao, Y. F.; Wu, Y. P.; Piner, R.; Akinwande, D.; Kim, K. S.; Rouff, R. S. Selective area .fluorination of graphene with fluoropolymer and laser irradiation. Nano Lett. 2012, 12,2374-2378.
  • 7Sofo, J. 0.; Suarez, A. M.; Usaj, G.; Cornaglia, P. S.; Hernandez-Nieves, A.; Balseiro, C. A. Electrical control of the chemical bonding of fluorine on graphene. Phys. Rev. B 2011,83,081411.
  • 8Jeon, K.-J.; Lee, Z.; Pollak, E.; Moreschini, L.; Bostwick, A.; Park, C.-M.; Mendelsberg, R.; Radrnilovic, V.; Kostecki, R.; Richardson, T. J.; et al. Fluorographene: A wide bandgap semiconductor with ultraviolet luminescence. ACS Nano 2011,5,1042-1046.
  • 9Lee, W.-K.; Robinson, J. T.; Gunlycke, D.; Stine, R. R.; Tamanaha, C. R.; King, W. P.; Sheehan, P. E. Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks. Nano Lett. 2011, 11,5461-5464.
  • 10Withers, F.; Bointon, T. H.; Dubois, M.; Russo, S.; Craciun, M. F. Nanopatterning of tluorinated graphene by electron beam irradiation. Nano Lett. 2011, 11, 3912-3916.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部