期刊文献+

一种基于灰色粒子滤波算法的机动AUV航深内测方法 被引量:2

A method for self-estimating the depth of maneuvering AUV based on the grey particle filter
下载PDF
导出
摘要 提出了一种将灰色预测和小波变换与标准粒子滤波相结合的灰色粒子滤波算法(GPF),并将其应用于机动AUV的航深内测。GPF针对机动AUV航深内测过程中由于AUV运动状态未知和测量噪声不断变化而导致的滤波失效问题,在粒子采样过程中结合了标准采样和灰色预测采样,保证了采样得到充分多的有效粒子。在计算粒子权重时,利用小波变换跟踪测量噪声统计特性的变化,提高了各粒子似然概率计算和权重分配的正确性。最后以外测法测得的高精度的机动AUV航深作为真实航深,对该GPF算法进行了实验对比验证,并与EKF和MMPF算法的结果作对比,实验结果表明了本文方法的有效性和实用性。 A grey particle filter (GPF) that incorporates the grey prediction algorithm and wavelet transform into the particle filter (PF) is presented. The GPF self-estimates the depth of maneuvering autonomous underwater vehicle (AUV) using the data measured by sensors equipped in the AUV under the condition that the prior maneuvering information is unknown and the measurement noise is time-varying. To implement the proposed method, the particles were sampled by standard sampling and grey prediction to insure the particles contain enough information about the true state of the maneuvering AUV. In addition, the measurement noise eovariance was modified by wavelet transform in real time. Therefore, the GPF can effectively correct the prior distribution and likelihood function of the particles and then alleviate the sample degeneracy problem which is common in the particle filter. A high accuracy depth trajectory, which tracks by the outside position sensor as the true depth of the maneuvering AUV, was employed. Then the performance of the EKF, MMPF and GPF was evaluated through the experimental data. The results show the effectiveness and robustness of the GPF.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第5期185-190,共6页 Journal of National University of Defense Technology
基金 国家留学基金委资助项目(2011611091)
关键词 粒子滤波 灰色预测 小波变换 机动AUV 航深内测 particle filter grey prediction wavelet transform maneuvering AUV depth self-estimation
  • 相关文献

参考文献4

二级参考文献42

  • 1邱恺,黄国荣,陈天如,杨亚莉.卡尔曼滤波过程的稳定性研究[J].系统工程与电子技术,2005,27(1):33-35. 被引量:22
  • 2许真珍,封锡盛.多UUV协作系统的研究现状与发展[J].机器人,2007,29(2):186-192. 被引量:47
  • 3Li X R,Jilkov V P.Survey of maneuvering target tracking-part V:multiple-model methods[J].IEEE Trana on Aerospace and Electronic Systems,2005,41 (4):1255-1321.
  • 4Blackman S S.Multiple hypothesis tracking for multiple target tracking[J].IEEE Trans on Aerospace and Electronic Systems Magazine,2004,19(1):5-18.
  • 5Montemerlo M,Thrun S,Koller D,et al.FastSLAM:a factored solution to the simultaneous localization and mapping problem[C]//2002 AAAI National Conference on Artificial Intelligence.Edmonton,Canada:AAAI,2002:593-598.
  • 6Montemerlo M,Thrun S.Simultaneous localizaion and mapping with unknown data association using FastSLAM[C]//2003 IEEE International Conference on Robotics and Automation.Pittsburgh,PA,USA:IEEE,2003:1985-1991.
  • 7Nieto J,Guivant J,Nebot E,et al.Real time data association for FastSLAM[C]//2003 IEEE International Conference on Robotics and Automation.Pittsburgh,PA,USA:IEEE,2003:412-418.
  • 8Bailey T,Nieto J,Nebot E.Consistency of the FastSLAM algorithm[C]//2006 IEEE International Conference on Robotics and Automation.Orlando,FL,USA:IEEE,2006:424-429.
  • 9Fulgenzi C,Ippoliti G,Longhi S.Expcrimental validation of FastSLAM algorithm integrated with a linear feutures based map[J].Mechatronics,2009,19(5):609-616.
  • 10Curcio J,Leonard J,Vaganay J,et al.Experiments in moving baseline navigation using autonomous surface craft[C]//2005 MTS/IEEE International Conference on OCEANS.Washington DC,USA:IEEE,2005:730-735.

共引文献45

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部