期刊文献+

固定床中甘油催化重整制氢 被引量:6

Hydrogen Production by Catalytic Steam Reforming of Glycerol in a Fixed Bed
下载PDF
导出
摘要 以白云石为载体,采用共沉淀法制备了一系列Ni基催化剂,选取甘油作为生物质裂解油的模拟物,在固定床反应器中进行甘油重整制氢反应,探索了催化重整制氢反应条件和反应规律.采用XRD和SEM方法对催化剂进行了表征,并通过TG方法分析了催化剂的积碳情况.实验结果表明,在Ni/DM(DM表示白云石)催化剂中添加氧化物MgO或MoO3可提高催化剂的活性,有效降低碳的沉积速率.选择Ni/Mo-MgO-DM催化剂,以气体产物中H2,CO,CH4,CO2的含量为指标,考察了反应温度、水蒸气与甘油中碳的摩尔比(水碳比)和进料空速对甘油重整制氢反应的影响,获得的较佳反应条件为:反应温度650~ 700℃、水碳比8~ 10、进料空速2.4~ 3.6 h-1.在此条件下,气体产物中H2含量能达到74%(x)以上. A series of Ni-based catalysts were prepared by co-precipitation method with dolomite(DM) as support. The catalytic steam reforming of glycerol which was selected as a model compound of bio-oil from biomass pyrolysis was studied over the Ni-based catalysts in a fixed bed reactor. The catalysts were characterized by means of XRD and SEM, and the carbon deposition was analyzed by means of TG. The results showed that the addition of MgO and/or MoO3 to the Ni-dolomite catalysts could improve the catalyst activity greatly and reduce the rate of the carbon deposition effectively. The influences of temperature, ratio of steam to carbon (n(H20) : n(C)) and feeding space velocity on the catalytic steam reforming were investigated. Under the optimum conditions of Ni/Mo- MgO-DM as the catalyst, reaction temperature 650-700℃, n(H20) : n(C) 8-10 and feeding space velocity 2.4-3.6 h1, the H2 content in the products could reach more than 74%(x).
出处 《石油化工》 CAS CSCD 北大核心 2013年第11期1197-1201,共5页 Petrochemical Technology
基金 国家自然科学基金项目(21376007) 安徽省教育厅自然科学基金重点项目(KJ2012A070) 安徽理工大学中青年学术骨干项目 高校国家级大学生创新创业训练计划(201210361004)
关键词 甘油 催化重整 制氢 镍基催化剂 glycerol catalytic reforming hydrogen production nickel-based catalyst
  • 相关文献

参考文献17

  • 1Copeland J, Foo G, Harrison L, et al. In Situ ATR-IR Study on Aqueous Phase Reforming Reactions of Glycerol over a Pt/ γ-A1203 Catalyst [J]. Catal Today, 2013, 205 (30) : 49 - 59.
  • 2Adhikari S, Femando S D, Filip T, et al. Conversion of Glyc- erol to Hydrogen via a Steam Reforming Process over Nickel Catalysts [ J ]. Energy Fuels, 2008, 22 (2) : 1220 - 1226.
  • 3Fermoso J, Li He, De Chen. Production of High Purity Hydro- gen by Sorption Enhanced Steam Reforming of Crude Glycerol [J].lntJHydrogenEnergy, 2012, 37(19) : 14047- 14054.
  • 4Sanchez E A, D'Angelo M A, Comelli R A. Hydrogen Produc- tion from Glycerol on Ni/A1203 Catalyst [J]. Int J Hydrogen Energy, 2010, 35 (11) : 5902 - 5907.
  • 5Guo Yong, Liu Xiaohui, Azmat M U, et al. Hydrogen Produc- tion by Aqueous-Phase Reforming of Glycerol over Ni-B Cata- lysts[J]. IntJHydrogenEnergy, 2012, 37(1): 227-234.
  • 6Sanchez E A, Comelli R A. Hydrogen by Glycerol Steam Re- forming on a Nickel-Alumina Catalyst: Deactivation Processes and Regeneration [J]. lnt J Hydrogen Energy, 2012, 37(19): 14740- 14746.
  • 7江涛,韩林芯,于恺,董朝辉,王轲,李涛,曹发海.催化剂制备方法对甘油液相重整制氢反应的影响[J].工业催化,2012,20(4):22-25. 被引量:2
  • 8Adhikari S, Femando S, Haryanto A. A Comparative Thermo- dynamic and Experimental Analysis on Hydrogen Production by Steam Reforming of Glycerin [J]. Energy Fuels, 2007, 21 (4) : 2306 - 2310.
  • 9Adhikari S, Fernando S, Haryanto A. Production of Hydrogen by Steam Reforming of Glycerin over Alumina-Supported Metal Catalysts[J].CatalToday, 2007, 129(3/4): 355-364.
  • 10Hirai T, lkenagaN O, Miyake T, et al. Production of Hydro- gen by Steam Reforming of Glycerin on Ruthenium Catalyst[J].EnergyFuels, 2005, 19(4) : 1761 - 1762.

二级参考文献39

  • 1Tapanes N C O, Aranda D A G, Mesquita Carneiro J W D, et al. Transesterifieation of Jatropha curcas oil glycerides: Theoretical and experimental studies of biodiesel reaction[J]. Fuel, 2008, 87 ( 10-11 ): 2286-2295.
  • 2Dou B L, Dupont V, Williams PT, et al. Thermogravimefic kinetics of crude glycerol [J]. Bioresour TechnoL, 2009, 100: 2613-2620.
  • 3Wang X, Li S, Wang H, Liu B, Ma X. Thermodynamic analysis of glycerin steam reforming [J]. Energy Fuels, 2008, 22 (6) : 4285-4291.
  • 4Adhikafi S, Fernando S, Gwaltney S R, et al. A thermodynamic analysis of hydrogen production by steam reforming of glycerol[J]. International Journal of Hydrogen Energy, 2007,32( 14): 2875-2880,.
  • 5Chen H S, Zhang T F, Dou B L, et al. Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 34 (17): 7208-7222.
  • 6Li Y, Wang W, Chen B, et al. Thermodynamic analysis of hydrogen production v/a glycerol steam reforming with CO2 adsorption[J], International Journal of Hydrogen Energy, 2010, 35( 15 ): 7768-7777.
  • 7Chen H S, Ding Y L, Cong N T, Dou B L, et al. A comparative study hydrogen production from steam-glycerol reforming : thermodynamics and experimental[J]. Renewable Energy, 2011, 36 (2): 779-788.
  • 8Dou B L, Dupont V, Williams P T. Computational Fluid dynamics simulation of gas-solid flow during steam reforming of glycerol in a fluidized bed reactor[J]. Energy & Fuels, 2008, 22 (6): 4102-4108.
  • 9Dou B L, Dupont V, Williams P T. Modeling of gas-solid flow and hydrogen production from steam reforming of glycerol in a fluidized bed reactor[J]. Prep. Pap. : Am. Chem. Soc., Div. Fuel Chem., 2008, 53: 628-629.
  • 10Dou B L, Song Y S. A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2010, 35 ( 19): 10271 - 10284.

共引文献6

同被引文献157

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部