期刊文献+

具有阶段结构和时滞的微分方程研究

Stage-structured and Delayed Differential Equation
下载PDF
导出
摘要 研究了捕食者具有阶段结构的捕食-食饵系统在时滞和脉冲干扰下的动态行为.利用脉冲微分方程比较定理和时滞方程基本定理,得到了系统的成熟捕食者根除周期解是全局吸引的和系统持久性的充分条件,进一步得到系统所有解的一致有界性.结果显示时滞和脉冲干扰对种群的发展至关重要. In this paper, the dynamic behavior of a stage-structured predator-prey model with delay and impulse is studied. By the comparison theorem of impulsive differential equation and the delayed differential equation, sufficient conditions for global attractiveness of the predator-eradication periodic solution and the permanence of the system are obtained. The uniform bounded of all the solutions is further given. The results show that the delayed and impulsive effects play an important role in the ecosystems.
作者 李畅通
出处 《西安工业大学学报》 CAS 2013年第9期689-693,共5页 Journal of Xi’an Technological University
基金 陕西省教育厅科学基础研究计划项目(12JK0865) 西安工业大学校长基金项目(XAGDXJJ1136)
关键词 时滞 阶段结构 脉冲 持续生存 delay stage-structure pulse permanence
  • 相关文献

参考文献10

  • 1LI Y K, KUANG Y. Periodic Solutions of Periodic Delay Lotka- Volterra Equations and Systems[J]. J Math Anal Appl, 2001,255 (1) : 260.
  • 2TANG S Y, TANG G Y, CHEKE R A. Optimum Timing for Integrated Pest Management: Modeling Rates of Pesticide Application and Natural Enemy Releases[J]. Journal of Theoretical Biology, 2010, 264(2) : 623.
  • 3李畅通,戴飞,冯孝周.具有脉冲控制的Ivlev型捕食系统的动态行为[J].西安工业大学学报,2012,32(1):5-8. 被引量:1
  • 4李畅通.一类具有密度制约的捕食与被捕食系统的定性分析[J].西安工业大学学报,2012,32(7):517-521. 被引量:1
  • 5CHANGTONG LI,SANYI TANG.THE EFFECTS OF TIMING OF PULSE SPRAYING AND RELEASING PERIODS ON DYNAMICS OF GENERALIZED PREDATOR-PREY MODEL[J].International Journal of Biomathematics,2012,5(1):157-183. 被引量:13
  • 6SONG X Y, HAO M Y, MENG X Z. A Stage Structured Predator- Prey Model with Disturbing Pulse and Time Delays[J]. Appl Math Model, 2009, 33(1):211.
  • 7JIAO J J,PANG G P,CHEN L S. A Delayed Stage Structured Predator Prey Model with Impulsive Stocking on Prey and Continuous Harvesting on Predator[J]. Applied Mathematics and Compulation, 2008,195(1) : 316.
  • 8HUANG C Y,LI Y J,HUO H F. The Dynamics of a Stage- Structured Predator- Prey System with Impulsive Effect and Holling Mass Defence[J]. Appl Math Model,2012,36(1) :87.
  • 9SHAO Y, DAI B. The Dynamics of an Impulsive Delay Predator Prey Model with Stage Structure and Beddington Type Functional Response[J]. Nonlinear Anal RWA,2010,11 (5) :3567.
  • 10SONG X Y, HAO M Y, MENG X Z. A Stage Structured Predator Prey Model with Disturbing Pulse and Time Delays [J]. Appl Math Model, 2009,33(1) :211.

二级参考文献17

  • 1刘兵,陈兰荪,张玉娟.基于IPM策略的捕食与被捕食系统的动力学性质[J].工程数学学报,2005,22(1):9-14. 被引量:12
  • 2张树文,陈兰荪.具有脉冲效应和综合害虫控制的捕食系统[J].系统科学与数学,2005,25(3):264-275. 被引量:30
  • 3BARCLAY H J.Models for Pest Control Using PredatorRelease,Habitat Management and Pesticide Release inCombination[J].J Appl Ecol,1982,19:337.
  • 4XIAO Y N,VANDEN B J.The Dynamics of an Eco-epidemic Model with Biological Control[J].EcolModel,2003,168:203.
  • 5TANG S Y,CHEN L S.The Periodic Predator-preylotka-volterra Model with Impulsive Effect[J].JMech Med Biol,2002,2(4):267.
  • 6WANG W D.CHEN L S.A Predator-prey Systemwith Stage-structure for Predator[J].ComputersMathematics with Applications,1997,33:83.
  • 7LIU X N,CHEN L S.Complex Dynamics of HollingType Lotka-volterra Predator-prey System with Im-pulsive Perturbations on the Predator[J].Chaos,Soli-tons and Fractals,2003,16:311.
  • 8IVLEV V S.Experimental Ecology of the Feeding ofFishes[M].New Haven:Yale University Press,1961.
  • 9LAKSHMIKANTHAM V,BAINOV D,SIME-ONOV P S.Theory of Impulsive Differential Equa-tions[M].Singapore:World Scientific,1989.
  • 10VAN LENTEREN J C, WOETS J. Biological and Integrated Pest Control in Greenhouses[J]. Ann Rev Ent, 1988,33: 239.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部