期刊文献+

集成主角及其在故障检测中的应用

Ensemble principal angle and its application to fault detection
下载PDF
导出
摘要 为了解决稀疏化造成的核主角不稳定问题,提出了集成主角方法.集成主角求再生核希尔伯特空间的多组近似基,将核主角问题极值向量的解空间限定在近似基张成的空间求核主角,然后集成特征值.利用集成主角(ensemble principal angle,EPA)可以对复杂环境下的多变量工业过程进行在线故障检测.最后本文通过在Tennessee Eastman数据集上的实验,对集成主角在故障检测中的应用进行了说明. Ensemble principal angle is proposed to deal with the instability of a sparse kernel principal angle. Groups of approximate basis are found in the Reproducing Kernel Hilbert Space. Eigenvectors for the principal angle problem are limited to the spaces spanned by the approximate basis. Eigenvalues in different subspace are integrated to make up for the sparsity. Ensemble principal angle (EPA) can be applied to online multivariable process for fault detection in complicated conditions. An example is given to illustrate the application in fault detection by performing experiments on the tennessee eastman data set.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第10期1347-1352,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(61271002) 江苏省自然科学基金资助项目(BK2011205)
关键词 主角 集成学习 故障检测 无监督学习 principal angle ensemble learning fault detection unsupervised learning
  • 相关文献

参考文献14

  • 1VAPNIK V N.Statistical Learning Theory[M].New York:John Wiley and Sons,1998.
  • 2SCHOLKOPF B,SMOLA A,MULLER K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.
  • 3AKAHO S.A kernel method for canonical correlation analysis[C] //Proceedings of the International Meeting of the Psychometric Society (IMPS2001).Berlin:Springer,2001.
  • 4BACH F R,JORDAN M I.Kernel independent component analysis[J].Journal of Machine Learning Research,2002,3(7):1-48.
  • 5WOLF L,SHASHUA A.Learning over sets using kernel principal angles[J].Journal of Machine Learning Research,2003,6(4):931-937.
  • 6HINTON G E,SALAKUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
  • 7d' ASPREMONT A,GHAOUI L EI,JORDAN M,et al.A direct formulation for sparse PCA using semidefinite programming[J].SIAM Review,2007,49(3):434-448.
  • 8GAN L Z,LIU H K,SHEN X F.Sparse kernel principal angles for online process monitoring[J].Journal of Computational Information System,2010,6(5):1601-1608.
  • 9XU H,MANNOR S.Sparse algorithms are not stable:a no-freelunch theorem[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(1):187-193.
  • 10OPITZ D,MACLIN R.Popular ensemble methods:an empirical study[J].Journal of Artificial IntelligenceResearch,1999,11(1):169-198.

二级参考文献12

  • 1LEE J M,QIN S J,LEE I B.Fault detection and diagnosis based on modified independent component analysis[J].AIChE Journal,2006,52(10):3501–3514.
  • 2GE Z Q,SONG Z H.Process monitoring based on independent com-ponent analysis-principal component analysis(ICA-PCA)and simi-larity factors[J].Industrial&Engineering Chemistry Research,2007,46(7):2054–2063.
  • 3BO C M,QIAO X,ZHANG G G,et al.An integrated method of independent component analysis and support vector machines for in-dustry distillation process monitoring[J].Journal of Process Control,2010,20(10):1133–1140.
  • 4HYVARINEN A,OJA E.Independent component analysis:algo-rithms and applications[J].Neural Networks,2000,13(4/5):411–430.
  • 5CICHOCKI A,AMARI S.Adaptive Blind Signal and Image Process-ing:Learning Algorithms and Applications[M].Chichester,England:John Wiley&Sons,2003.
  • 6BARTYS M,PATTON R,SYFERT M,et al.Introduction to the DAMADICS actuator FDI benchmark study[J].Control Engineering Practice,2006,14(6):577–596.
  • 7KOS J M,BARTYS M,RZEPIEJIEWSKIA P.Actuator fault distin-guishability study for the damadics benchmark problem control[J].Control Engineering Practice,2006,14(6):645–652.
  • 8袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-35. 被引量:88
  • 9谢磊,刘雪芹,张建明,王树青.基于NGPP-SVDD的非高斯过程监控及其应用研究[J].自动化学报,2009,35(1):107-112. 被引量:16
  • 10WANG Hong,CHAI Tian-You,DING Jin-Liang,BROWN Martin.Data Driven Fault Diagnosis and Fault Tolerant Control: Some Advances and Possible New Directions[J].自动化学报,2009,35(6):739-747. 被引量:44

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部