期刊文献+

有源层厚度对ZnO薄膜晶体管电学性能的影响 被引量:2

Effects of Active Layer Thickness on Electrical Properties of ZnO Thin-Film Transistors
下载PDF
导出
摘要 为优化氧化锌薄膜晶体管(ZnO-TFT)的工艺参数,采用射频磁控溅射法沉积ZnO薄膜制备出不同有源层厚度的ZnO-TFT器件,探讨了有源层厚度对ZnO-TFT电学性能的影响.实验结果表明:有源层厚度在65nm附近时,ZnO-TFT器件的性能最好;有源层太薄时,ZnO薄膜的结晶性差,薄膜内部存在大量孔洞和缺陷,从而导致ZnO-TFT器件的载流子迁移率较低,开关电流比较小;有源层太厚(大于65 nm)时,ZnO-TFT的载流子迁移率和开关电流比随有源层厚度的增加而减小,这是因为随着有源层厚度的增加,载流子在源、漏电极附近高电阻区的导电路径增加. In order to optimize the processing parameters of ZnO thin-film transistors (ZnO-TFTs),ZnO-TFTs were fabricated by means of RF (Radio Frequency) magnetron sputtering,with the ZnO thin-films of different thickness as the active layer,and the effects of the active layer thickness on the electrical properties of ZnO-TFTs were investigated.Experimental results indicate that (1) the ZnO-TFT device shows the best performance at the active layer thickness of about 65 nm; (2) when the active layer is too thin,the ZnO film is of a poor crystallinity and is of a large number of holes and defects,thus resulting in a lower carrier mobility and a smaller on/off current ratio ; and (3) when the active layer is too thick (more than 65 nm),the carrier mobility and on/off current ratio of the ZnO-TFT decrease with the increase of the active layer thickness,because the conductive path of high resistance region near the source and the drain electrodes increases with the increase of the active layer thickness.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第9期23-27,94,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61076113)
关键词 薄膜晶体管 氧化锌 有源层厚度 电学性能 thin-film transistors zinc oxide active layer thickness electrical properties
  • 相关文献

参考文献16

  • 1Wu C C,Theiss S D,Gu G. Integration of organic LED's and amorphous Si TFF' s onto flexible and lightweight metal foil substrates [ J]. IEEE Electron Device Letters, 1997, 18(12) :609-612.
  • 2Lim K M, Lee K E,Yoo J S, et al. A 3.5 in. QVGA poly- Si TFT-LCD with integrated driver including new 6-bit DAC [ J ]. Solid-State Electronics, 2005,49 (7) : 1107- 1111.
  • 3Lin C L, Chang W Y, Hung C C. LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three- dimensional AMOLED display [ J]. IEEE Electron Device Letters, 2012,33 ( 5 ) : 700- 702.
  • 4Yun B,Jeong M C, Moon T H, et al. Transparent conduc- tive Al-doped ZnO films for liquid crystal displays [ J ]. Journal of Applied Physics,2006,99(12) :124505/1-4.
  • 5Hirao T, Furuta M, Hiramatsu T, et al. Bottom-gate zinc oxide thin film transistors for AM-LCDs [ J ]. IEEE Tran- sactions on Electron Devices,2008,55 ( 11 ) : 3136- 3142.
  • 6Carcia P F, Mclean R S, Reilly M H, et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputte- ring [ J ]. Applied Physics Letters, 2003,82 ( 7 ) :.1117- 1119.
  • 7Ozgur U, Alivov Y L, Liu C, et al. A comprehensive review of ZnO materials and devices [ J 1- Journal of Applied Physics ,2005,98 (4) :041301/1-103.
  • 8Chen M M, Zhang Q L, Su L X, et al. ZnO film with ultra- low background electron concentration grown by plasma assisted MBE using Mg film as the buffer layer [ J ]. Mate- rials Research Bulletin ,2012,47 (9) :2673-2675.
  • 9Liu Y, Gorla C R, Liang S, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD [ J ]. Jour- nal of Electronic Materials,2000,29( 1 ) :69-74.
  • 10Park J S, Son K S, Kim T S, et al. High performance and stability of double-gate Hf-In-Zn-O thin-film transistors under illumination [J]. IEEE Electron Device Letters, 2010,31 (9) :960-962.

同被引文献23

  • 1JEONG Sunho, MOON Jooho. Low-temperature, Solution-pro- cessed Metal Oxide Thin Film Transistors[J]. Journal of Materi- als Chemistry, 2012, 22 : 1243 - 1250.
  • 2PARK Si Yun, KIM Beom Joon, KIM Kyongjun, et al. Low-Tem- perature, Solution-Processed and Alkali Metal Doped ZnO for High-Performance Thin Film Transistors [ J ]. Advaced Meterials, 2012,24(6) :834 -838.
  • 3KIMURA Mutsumi, MATSUDA Tokiyoshi, FURUTA Mamoru, et al. Trap Densities in ZnO TFTs with SiNJSiOx Stacked Gate In- sulators Fabricated Using Several N20 Flow Rate during SiOx Dep- osition[ J]. ECS Transactions, 2013, 54( 1 ) : 121 - 126.
  • 4LIN Yen-Hung, FABER Hendrik, ZHAO Kni, et al. High-Per- formance ZnO Transistors Processed Via an Aqueous Carbon-Free Metal Oxide Precursor Route at Temperatures Between 80 180 C [ J ]. Advanced Materials, 2013,25 ( 31 ) : 4340 - 4346.
  • 5DEHUFF N L, KETYENRING E S, HONG D, et al. Transpar- ent thin-film Transistors with Zinc Indium Oxide Channel Layer [J]. Appl. Phys., 2005 (97) :064505 -1 -6.
  • 6ZHANG X A, ZHANG J W, ZHANG W F, et al. Fabrication of Bottom-Gate and Top-Gate Transparent ZnO Thin Film Transistors[ J ]. Journal of Semiconductors, 2008 (29) : 859 - 862.
  • 7ZORBA Serkan, GAO Yongli, Feasibility of Static Induction Transistor with Organic Semiconductors [ J ]. Appl. Phys. Lctt. , 2005(86):193508.
  • 8CHAO Yu-Chiang, MENG Hsin-Fei, Polymer Space-charge-lim- ited Transistor[ J]. Appl. Phys. Lett, 2006(88) :223510.
  • 9WATANABE Yasuyuki, Vertical-type Organic Transistor Ad- vances Flexible Sheet Displays [J]. SPIE, 2009 (7) :1736.
  • 10MARTIN A.UV-VIS sensor system based on Sn O2 nanowires[J].Sens Actuat A:Phys,2014(210):205-208.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部