期刊文献+

基于径向基神经网络的舒必利稳态血药浓度预测

Prediction of Steady-State Plasma Concentration of Sulpiride Based on Radial Basis Function Neural Networks
下载PDF
导出
摘要 目的建立基于径向基(RBF)神经网络舒必利稳态血药浓度预测模型。方法将所收集的用于建立舒必利稳态血药浓度预测模型的数据(包括患者的性别、年龄、体重、剂量、稳态血药谷浓度、多项生理生化指标等)分为训练集、校验集和测试集,前两者用于训练RBF神经网络,后者用于测试RBF神经网络,分别利用各数据集的网络计算输出值与目标输出值之间的均方差(MSE)和相关系数(R)评价网络模型的训练效果和预测性能。结果建立以患者的性别、年龄、体重、剂量、多项生理生化指标等37项参数为输入变量,舒必利稳态血药浓度为输出变量的37-1-1结构的RBF神经网络,当网络中心宽度SP值为2.3时,训练集、校验集和测试集的MSE分别为4.50×10-6、0.003 531和0.011 001,R值分别为0.999 91、0.955 32和0.814 25。结论利用RBF神经网络所建立的舒必利稳态血药浓度预测模型的预测效果较好,但泛化能力尚待提高。 Objective To establish a model for predicting the steady-state plasma concentration of sulpiride based on radial basis function (RBF) neural network. Methods The data ( including the patients' gender, age, dose, weight, dosage, steady-state plasma trough concentration and multiple physiological and biochemical indexes, etc. ) to modeling the steady-state plasma concentration of sulpiride was divided into training set, validation set and test set. The first 2 was used for training the RBF neural network, the latter was used for testing the RBF neural network. The error of mean square (MSE) and coefficient correlation (R) between the computed output value and objective output value of every data sets was used for evaluating the training and predictive effect of the RBF neural network, respectively. Results The 37-1-1 RBF neural network model was established which had captured the relationships between the input variables (the patients' gender, age, dose,weight, dosage and multiple physiological and biochemical indexes etc. 37 parametes) and the output variable ( the steady-state plasma concentration of sulpiride). When SP value, that is the network center width,was 2.3,the MSE and R values of the training set,validation set and test set were 4.50 x 10 -6,0. 003 531,0.011 001 ,and 0. 999 91,0. 955 32,0. 814 25, respectively. Conclusion The RBF neural network model has the better predictive effect to predict the steady-state plasma concentration of sulpiride. But it' s generalization is required to be improved.
出处 《今日药学》 CAS 2013年第10期633-636,共4页 Pharmacy Today
基金 国家自然科学基金(编号:10926191) 中山市科技计划资助项目(编号:20102A024)
关键词 径向基神经网络 舒必利 稳态血药浓度 radial basis function neural networks sulpiride steady-state plasma concentration
  • 相关文献

参考文献6

二级参考文献31

  • 1牟燕,李元媛,林琳,王鹏.合并用药对环孢素A血药浓度的影响[J].中国药物应用与监测,2006,3(1):20-22. 被引量:9
  • 2陈騉,王睿.特殊人群的治疗药物监测[J].中国药物应用与监测,2004,1(4):33-36. 被引量:5
  • 3郑芝欣,翟保同.环孢素A血药浓度监测及个体化给药方案设计在肾移植病人中的应用[J].医学信息(西安上半月),2006,19(3):503-504. 被引量:2
  • 4孙增先,周金玉,张骞峰,杨致富,温峰.肝肾移植受者环孢素AUC监测评估[J].中国药学杂志,2006,41(21):1673-1675. 被引量:5
  • 5Tsunoda SM, Aweeka FT. The use of therapeutic drug monitoring to optimise immunosuppressive therapy[J]. Clin Pharmacokinet, 1996, 30(2): 107-140.
  • 6文素兰,王舒玲,王凤英.静脉注射舒必利致死一例[J].中华精神科杂志,1998,(31):61.
  • 7胡人文,主贤苟,李弘,等.静脉滴注舒必利致阿一斯综合症一例[J].中华精神科杂志,1998,(31):127.
  • 8[3]Edwarde JG, Alexander JR, Gordon A, et al. Controlled trial of sulpiride in chronic schizophrenic patients. Br J Psychiatry, 1980,137 :522~529
  • 9[4]Alfredsson G,Bierkenstedt L, Edman G,et al. Relationship between drug concentrations in serum and CSF,clinical effects and monoaminergic variadles in schizophrenic patients treated with sulpiride or chlorpromazine. Acta Scand Psychiatrica,1984,69(suppl 311):49~74
  • 10[5]Allfredsson G, Harnryd C,Wiesel FA. Effects of sulpiride and chlorpromazine on autistic and positive psychotic symptoms in schizophrenic patients-relationship to drug concentrations. Psychopharmacology, 1985,85 : 8 ~ 13

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部