期刊文献+

冬瓜片渗透脱水平衡分配系数研究

Equilibrium distribution coefficients during osmotic dehydration of white gourd slices
原文传递
导出
摘要 为了深入理解渗透脱水的机理,优化、控制渗透脱水工艺,必须获取水分与固形物的平衡分配系数。测定冬瓜片在30--50℃、40%--60%麦芽糖浆中渗透脱水的失水率与固形物增加率,经方程回归得到冬瓜片的水分和固形物平衡分配系数,并用9种模型拟合平衡分配系数与温度、麦芽糖浆浓度的关系。结果表明:冬瓜片的水分和固形物平衡分配系数分别在0.3411-0.8406g/g、1.2392~1.5754g/g内。麦芽糖浆浓度固定时,冬瓜片的水分平衡分配系数随温度升高而减少,冬瓜片的固形物平衡分配系数随温度增加而增加。温度固定时,冬瓜片的水分平衡分配系数随麦芽糖浆浓度增加而减小,冬瓜片的固形物平衡分配系数随麦芽糖浆浓度增加而增加或减少。以R。、SSE、RMSE与x。评价9种模型的拟合结果,模型4的拟合精度最高。模型4适用于预测冬瓜片的水分和固形物平衡分配系数。 In order to understand osmotic dehydration mechanism thoroughly, the equilibrium distribution coefficients of water and solids were obtained to optimize and control osmotic dehydration process. In this paper, water loss and solid gain of white gourd slices were determined during osmotic dehydration at temperature (30-50 ~C) and concentration (40%~60%, w/w) of maltose syrup solution. The equilibrium distribution coefficients of water and solids for white gourd slices were determined through equation regression, nine models were used to fit the relationship between equilibrium distribution coefficients and temperature and maltose syrup concentration. Results showed that the equilibrium distribution coefficients of water and solids for white gourd slices ranged from 0.3411 gig to 0.8406 gig and from 1.2392 g/g to 1.5754 g/g, respectively. At a constant maltose syrup concentration, the equilibrium distribution coefficients of water for white gourd slices decreased with the increasing temperature, whilethe equilibrium distribution coefficients of solids for white gourd slices increased with the increasing temperature. At a constant temperature, the equilibrium distribution coefficients of water for white gourd slices decreased with the increasing maltose syrup concentration, while the equilibrium distribution coefficients of solids for white gourd slices increased or decreased with the increasing maltose syrup concentration. The fitting results of the nine models were evaluated by using statistical analyses such as determination coefficient (R2), sum squared error (SSE), root mean square error (RMSE) and chi-square (X2). The fitting accuracy of the fourth model is the highest. The fourth model was suitable to predict the equilibrium distribution coefficients of water and solids for white gourd slices.
出处 《食品科技》 CAS 北大核心 2013年第11期80-86,共7页 Food Science and Technology
基金 长江大学科研创新基金项目(39210144)
关键词 冬瓜 渗透脱水 平衡分配系数 平衡失水率 平衡固形物增加率 white gourd osmotic dehydration equilibrium distribution coefficients equilibrium water loss equilibrium solid gain
  • 相关文献

参考文献15

  • 1Erasmo Herman-Lara, Hermelinda Pacheco-Angulo. Mass transfer modeling of equilibrium and dynamic periods during osmotic dehydration of radish in NaC1 solutions[J]. Food and Bioproducts Processing,2012.
  • 2田红萍,王剑平.胡萝卜渗透脱水传质试验研究[J].农业工程学报,2004,20(6):220-222. 被引量:24
  • 3Rahman M S. Osmotic dehydration kinetics of foods[J]. Indian Food Industry,1992,15:20-24.
  • 4Barat J M E, Chiralt A, Fito P. Equilibrium in cellular food osmotic solution systems as related to structure[J]. Journal of Food Science,1998,63:836-840.
  • 5Biswal R N, Bozprgmehr K. Equilibrium data for osmotic concentration of potato in NaCl-water solution[J]. Journal ot Food Process Engineering, 1991,14:237-245.
  • 6Ertekin F K, Suhanoglu M. Modelling of mass transfer during osmotic dehydration of apples[J]. Journal of Food Engineering,2000,46:243-250.
  • 7Panagiotou N M, Karathanos V T, Maroulis Z B. Mass transfer in osmotic dehydration of some fruits[J].International Journal of Food Science and Technology, 1998,33(3):267-284.
  • 8Rahman M S, Sablani S S, Al-Ibrahim M A. Osmotic dehydration of potato: equilibrium kinetics[J]. Drying Technology,2001,19:1163-1176.
  • 9Parjoko, Rahman M S, Buckle K A, et al. Osmotic dehydration kinetics of pineapple wedges using palm sugar[J]. Lebensmittel-Wissenschaft und-Technolgie, 1996,29:452-459.
  • 10Togrul Inci Turk, Ispir Ayse. Equilibrium distribution coefficients during osmotic dehydration of apricot[J], food and bioproducts processing,2008,86:254-267.

二级参考文献10

  • 1Ponting J D, Watters G O, Forrey R R, et al. Osmotic dehydration of fruits[J]. Food Technology, 1966,20:125-128.
  • 2Danila Torreggiani, Gianni Bertlo. Osmotic pre-treatments in fruit processing: chemical, physical and structural effects[J]. Journal of Food Engineering,2001,49:247-253.
  • 3Hanna Kowalska, Andrzej Lenart. Mass exchange during osmotic pretreatment of vegetables[J]. Journal of Food Engineering,2000,49:137-140.
  • 4Rastogi N K, Raghavarao K S M S, Niranjan K. Mass transfer during osmotic dehydration of banana: Fickian diffusion in cylindrical configuration[J]. Journal of Food Engineering,1997,31:423-432.
  • 5Eshtiaghi M N, Stute R, Knorr D. High pressure and freezing pretreatment effects on drying: rehydration texture and colour of green beans, carrots and potatoes[J]. Journal of Food Science, 1994,59:1168-1170.
  • 6Ulrich Erle, Helmar Schubert. Combined osmotic and microwave-vacuum dehydration of apples and strawberries[J]. Journal of Food Engineering, 2001,49:193-199.
  • 7Rastogi N K, Raghavarao K S M S, Niranjan K, et al. Recent developments in osmotic dehydration: methods to enhance mass transfer[J]. Trends in food science and technology, 2002,13(2):48-59.
  • 8邱伟芬.果蔬渗透脱水的研究进展及应用前景[J].食品科技,2000,25(4):31-32. 被引量:32
  • 9田红萍,王剑平.胡萝卜渗透脱水试验研究[J].浙江大学学报(农业与生命科学版),2003,29(2):169-174. 被引量:17
  • 10张慜,王成芝,李春丽.茄子渗透脱水及渗后干燥的研究[J].农业工程学报,1992,8(4):97-101. 被引量:12

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部