期刊文献+

基于双视点立体系统的特征点匹配物体跟踪算法研究

A Feature Point Match Object Tracking Algorithm Based on Dual-view Stereo System
下载PDF
导出
摘要 在双视点立体系统中,运动物体跟踪是计算机视觉中一个热门的研究领域.为了精确地获得运动物体的像素点,我们提出了一个新的物体跟踪算法:首先计算运动物体的特征点,然后对其进行匹配,最后连接匹配的特征点并形成轨迹.算法在分辨率为640×480和768×576的视频文件中进行.结果表明:与L-K光流法相比,新算法可以更鲁棒性地检测运动物体并获得更精确的运动轨迹. Tracking moving object in dual-view stereo system is becoming a hot research area in computer vision. To capture the moving objects pixels more accurately, a new object tracking algorithm is proposed to first compute moving objects feature points and then match these points, finally connect the matching feature points and get objects motion trajectories. The algorithm is tested in the video sequences with resolution 640)〈 480 and 768)〈 576 individually. The results show that the algorithm is more robust and the trajectories of the moving objects tracked with our method are more accurate compared with current method of L--K optical flow.
机构地区 中原工学院
出处 《中原工学院学报》 CAS 2013年第2期5-8,共4页 Journal of Zhongyuan University of Technology
基金 国家自然科学基金项目(60902063) 河南省高等学校青年骨干教师资助计划项目(2010GGJS-098) 河南省科技创新人才支持计划项目(124100510015)
关键词 双视点立体系统 物体跟踪 特征点匹配 轨迹 dual-view stereo system object tracking feature points matching trajectories
  • 相关文献

参考文献11

  • 1于仕琪,刘瑞祯.学习OpenCV[M].北京:清华大学出版社,2009.
  • 2门朝光,边继龙,李香.基于限制搜索空间的快速立体匹配方法[J].吉林大学学报(工学版),2012,42(2):423-428. 被引量:2
  • 3NING J F,ZHANG L,ZHANG D,et al. Robust Object Tracking Using Joint Color-texture Histogram[J]. International Jour- nal of Pattern Recognition and Artificial Intelligence, 2009(23): 1245-1262.
  • 4冈萨雷斯.数字图像处理[M].阮秋琦,译.北京:电子工业出版社,2011.
  • 5Neubeck A, Luc Van Gool. Efficient Non-maximum Suppression[C]. Hong Kong :International Conference on Pattern Recog- nition, 2006(3): 850-855.
  • 6Derpanis K G. The Harris Corner Detection[R]. York: York University, 2007.
  • 7Hsu C Y, Lu C S, Pei S C. Image Feature Extraction in Encrypted Domain With Privacy-preserving SIFT[J]. IEEE Transac- tions Image Process, 2012, 21: 4593-4607.
  • 8ZHANG Hui-juan, HU Qiong. Fast Image Matching Based-on Improved SURF Algorithm [C]. Shanghai: Tongji University, 2011.
  • 9张浩峰,赵春霞.一种利用动态规划和左右一致性的立体匹配算法[J].中国图象图形学报,2008,13(4):756-760. 被引量:8
  • 10ZHU Wen-qiao, LU Dong-ming, DIAO Chang-yu, et al. Variational Stereo Matching with Left Right Consistency Constraint [C]. Hangzhou : Zhengjiang University, 2011.

二级参考文献21

  • 1Scharstein D,Szeliski R.A taxonomy and evalua-tion of dense two-frame stereo correspondence algo-rithms[J].International Journal of Computer Vi-sion,2002,47(1-3):7-42.
  • 2Yoon K J,Kweon S.Adaptive support-weight ap-proach for correspondence search[J].IEEE Trans-actions on Pattern Analysis and Machine Intelli-gence,2006,28(4):650-656.
  • 3De-maeztu L,Villanueva A,Cabeza R.Stereo matc-hing using gradient similarity and locally adaptivesupport-weight[J].Pattern Recognition Letters,2011,32(13):1643-1651.
  • 4Geiger D,Ladendorf B,Yuille A.Occlusions andbinocular stereo[J].International Journal of Com-puter Vision,1995,14(3):211-226.
  • 5Cox I J,Hingorani S L,Rao S B,et al.A maxi-mum likelihood stereo algorithm[J].Computer Vi-sion Image Understanding,1996,63(3):542-567.
  • 6Birchfield S,Tomasi C.Depth discontinuities bypixel-to-pixel stereo[J].International Journal ofComputer Vision,1999,35(3):269-293.
  • 7Bobick A F,Intille S S.Large occlusions stereo[J].International Journal of Computer Vision,1999,33(3):181-200.
  • 8Boykov Y,Veksler O,Zabih R.Fast approximateenergy minimization via graph cuts[J].IEEE Trans-actions on Pattern Analysis and Machine Intelli-gence,2001,23(11):1222-1239.
  • 9Sun J,Zheng N N,Shum H Y.Stereo matching u-sing belief propagation[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2003,25(7):787-800.
  • 10Brown Z,Burschka D, Hager G. Advance in computational stereo[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(8) :993 - 1008.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部