期刊文献+

采用不同插值函数的流体力学有限元数值波动研究 被引量:4

NUMERICAL WAVE OF FINITE ELEMENT SOLUTION IN FLUID MECHANICS USING DIFFERENT INTERPOLATION FUNCTIONS
原文传递
导出
摘要 对一维定常对流扩散方程有限元解的波动问题进行汇总和分析,讨论产生有限元解波动的原因,介绍常用的处理解波动的基本原理和技术。采用不同插值函数进行有限元分析,并与解析解对比,重点讨论了指数型插值函数有限元解的波动和收敛性。研究结果表明提高插值函数连续性可以改善一维对流扩散方程有限元数值波动情况。与线性Lagrange插值函数相比,指数型插值函数可精确给出变量在单元内的分布,并能较好地控制数值波动现象。同时在较稀疏的网格条件下,指数型插值函数可取得问题较好的数值解。 The finite element solution of one dimensional stationary convection diffusion equation for wave problems is summarized and analyzed. The reasons for wave are discussed and the basic principles and techniques which deal with the wave are also displayed. By using different interpolation functions, the results of finite element solutions are compared with that of the analytical solution. The wave and convergence of a finite element solution using an exponential function based interpolation (EFBI) are focally analyzed. The results show that the continuity improvement of interpolation functions can decrease the wave degree. Compared with the liner Lagrange interpolation function, an EFBI function can simulate the distribution of variables within the unit accurately and is effective to deal with the problem of numerical waves. In the condition of sparse grids, the finite element method using an EFBI function has a good solution.
出处 《工程力学》 EI CSCD 北大核心 2013年第11期266-271,共6页 Engineering Mechanics
基金 国家自然科学基金项目(51108210 51278461) 浙江省重点科技创新团队项目(2010R50034)
关键词 对流扩散方程 流体力学有限元 数值波动 插值函数 指数型插值函数 convection diffusion equation finite element in fluid mechanics numerical wave interpolationfunction exponential function based interpolation (EFBI)
  • 相关文献

参考文献15

  • 1Bathe K J. Finite element procedures [M]. Prentice Hall,1996: 1-25.
  • 2Bathe K J, Hou Zhang. A flow-condition-basedinterpolation finite element procedure for incompressiblefluid flows [J]. Computers and Structures, 2002, 80:1267-1277.
  • 3Zienkiewicz O C, Wu J. A general explicit orsemi-explicit algorithm for compressible andincompressible flows [J]. International Journal forNumerical Methods in Engineering, 1992,35: 457-479.
  • 4Nithiarasu P, Codina R, Zienkiewicz O C. TheCharacteristic-Based Split (CBS) scheme~a unifiedapproach to fluid dynamics [J]. Numerical Methods inEngineering, 2006,66: 1514-1546.
  • 5Zienkiewicz O C,Taylor R L. The finite element methodfor fluid dynamics [M]. 5th ed. Elsevier: Amsterdam,2000: 79-105.
  • 6Gresho P M, Sani R L. Incompressible flow and the finiteelement method [M]. New York: John Wiley and Sons,Inc., 2000.
  • 7Donea J, Antonio Huerta. Finite element methods forflow problems [M]. New York: John Wiley and Sons, Ltd,2003.
  • 8Zhang Benzhao. The finite element method in fluidmechanics [M]. 1st ed. Beijing: Mechanical IndustryPress, 1986: 116-181.
  • 9刘希云,赵润祥.流体力学中的有限元与边界元方法[M].上海交通大学出版,1993: 140-288.
  • 10Liu Xiyun, Zhao Runxiang. Finite element and boundaryelement methods in fluid mechanics [M]. ShanghaiJiaotong University Press, 1993: 140-288.

二级参考文献15

共引文献1

同被引文献54

  • 1秦念,周叮,刘伟庆,王佳栋.水平激励下任意截面柱形储液罐内液体的晃动响应[J].工程力学,2015,32(2):178-182. 被引量:11
  • 2孙国江.卫星液体燃料与结构耦合振动分析[J].中国空间科学技术,1996,16(1):52-57. 被引量:1
  • 3Zienkiewicz O C, Taylor R L. The finite element method for fluid dynamics [M]. 5th ed. Elsevier: Amsterdam, 2000.
  • 4Belytschko T, Liu W K, Moran B. Nonlinear finite elements for continua and structures[M]. New York: John Wiley & Sons Limited, 2000.
  • 5Bathe K J. Finite element procedures [M]. New Jersey : Prentice Hail, 1996 : 1-25.
  • 6Bathe K J, ZHANG Hou . A flow-condition-based interpolation finite element procedure for incompressible fluid flows [J]. Computers and Structures, 2002, 80(14): 1267.
  • 7Kohno H, Bathe K J. A nine-node quadrilateral FCBI element for incompressible fluid flows [ J ]. Communications in Numerical Methods in Engineering, 2006, 22(8): 917.
  • 8Zienkiewicz O C, Wu J. A general explicit or semi-explicit algorithm for compressible and incompressible flows [J ]. International Journal for Numerical Methods in Engineering, 1992, 35(3): 457.
  • 9Nithiarasu P, Codina R, Zienkiewicz O C. The characteristic- based split (CBS) scheme-a unified approach to fluid dynamics [J]. Numerical Methods in Engineering, 2006, 66(10) .. 1514.
  • 10Hughes T J R, Brooks A. A theoretical framework for Petrov- Galerkin methods with discontinuous weighting functions: Application to the streamline-upwind procedure [J ]. Finite Elements in Fluids, 1982, 4(2) : 47.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部