期刊文献+

Al-Zn-Mg-Cu-Zr(-Sn)合金的强度和疲劳断裂行为(英文) 被引量:2

Strength and fatigue fracture behavior of Al-Zn-Mg-Cu-Zr(-Sn) alloys
下载PDF
导出
摘要 通过拉伸试验和疲劳裂纹扩展试验研究了Al-Zn-Mg-Cu-Zr(-Sn)合金的强度和疲劳断裂行为。运用光学显微镜(OM)、扫描电镜(SEM)和透射电子显微镜(TEM)对试验合金的微观组织进行分析检测。结果表明,Sn的添加可以阻碍固溶时Al-Zn-Mg-Cu-Zr合金晶粒的长大,也使得过时效Al-Zn-Mg-Cu-Zr-Sn合金的晶界无沉淀析出带(PFZ)变窄及晶界析出相变小,因此,提高了合金的抗疲劳裂纹扩展能力。此外,过时效的Al-Zn-Mg-CuZr-Sn合金具有较高的抗拉强度。 The strength and fatigue fracture behavior of A1-Zn-Mg-Cu-Zr(-Sn) alloys were studied by performing tensile tests and fatigue crack propagation (FCP) tests. The microstructures of the experimental alloys were further analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM); phase analysis of these alloys was conducted with an X-ray diffraction (XRD). The results show that when Sn is included, growth of the recrystallization grains in the solution-treated A1-Zn-Mg-Cu-Zr alloy is obstructed, the precipitation-free zone (PFZ) of the overaged A1-Zn-Mg-Cu-Zr-Sn alloy becomes narrow, and the grain boundary precipitates are smaller. Consequently, the FCP resistance is higher. In addition, the overaged Sn-containing alloy has considerably higher tensile strength than the alloy without Sn.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2817-2825,共9页 中国有色金属学报(英文版)
基金 Project(2010CB731706) supported by the National Basic Research Program of China
关键词 Al-Zn-Mg-Cu—Zr-Sn强度 疲劳断裂行为 微观组织 Al-Zn-Mg-Cu-Zr Sn strength fatigue fracture behavior microstructure
  • 相关文献

参考文献40

  • 1JIAN Hai-gen, JIANG Feng, WEN Kang, JIANG Long, HUANG Hong-feng, WEI Li-li. Fatigue fracture of high-strength AI-Zn-Mg-Cu alloy [J]. Transactions of Nonferrous Metals Society of China, 2009, 19: 1031-1036.
  • 2王辉,罗应兵,Peter FRIEDMAN,陈明和,高霖.高强度铝合金7075的温成形性能(英文)[J].Transactions of Nonferrous Metals Society of China,2012,22(1):1-7. 被引量:28
  • 3SENKOV O N, SENKOVA S V, SHAGIEV M R. Effect of Sc on aging kinetics in a direct chill cast AI-Zn-Mg-Cu alloy [J]. Metallurgical and Materials Transactions A, 2008, 39: 1034-1053.
  • 4BAI S, LIU Z Y, LI Y T, HOU Y H, CHEN X. Microstructures and fatigue fxacture behavior of an A1-Cu-Mg-Ag alloy with addition of rare earth Er [J]. Materials Science and Engineering A, 2010, 527: 1806-1814.
  • 5ZHANG Zhuo, CHEN Kang-hua, FANG Hua-chan, QI Xiong-wei, LIU Gang. Effect of Yb addition on strength and fracture toughness of AI-Zn-Mg-Cu-Zr aluminum alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, 18: 1037-1042.
  • 6MONDOLFO L F. Aluminum alloys: Structure and properties [M]. London: Butterworths, 1976.
  • 7RINGER S P, HONO K, SAKURAI T. The effect of trace additions of Sn on precipitation in A1-Cu alloys: An atom probe field ion microscopy study [J]. Metallurgical and Materials Transactions A, 1995, 26:2207-2217.
  • 8SILCOCK J M, FLOWER H M. Comments on a comparison of early and recent work on the effect of trace additions of Cd, In, or Sn on nucleation and growth of 0' in A1-Cu alloys [J]. Scripta Materialia, 2002, 46: 389-394.
  • 9BANERJEE S, ROBI P S, SRINIVASAN A, LAKAVATH P K. Effect of trace additions of Sn on microstructure and mechanical properties of A1-Cu-Mg alloys [J]. Materials & Design, 2010, 31: 4007-4015.
  • 10MOHAMED A M A, SAMUEL F H, SAMUEL A M, DOTY H W, VALTIERRA S. Influence of Tin addition on the microstructure and mechanical properties of AI-Si-Cu-Mg and A1-Si-Mg casting alloys [J]. Metallurgical and Materials Transactions A, 2008, 39: 491-501.

二级参考文献4

共引文献27

同被引文献46

  • 1MILOSAVLJEVIC A, KOSTOV A, TODOROVIC R. Smart materials: Shape memory alloys [J]. Bakar, 2011, 36(l): 39-44. (in Serbian).
  • 2JANKE L, CZADERSKI C, MOTAVALLI M, RUTH J. Applications of shape memory alloys in civil engineering structures: Overview, limits and new ideas [J]. Materials and Structures, 2005, 38(5): 578-592.
  • 3HUANG W M, DING Z, WANG C C, WEI J, ZHAO Y, PURNAWALI H. Shape memory materials [J]. Materials Today, 2010, 13(7-8): 54-61.
  • 4CIMPOESU N, STANCIU S, VIZUREANU P, CIMPOESU R, CRISTIAN ACHI~3EI D, ION1TA I. Obtaining shape memory alloy thin layer using PLD technique [J]. Journal of Mining and Metallurgy Section B: Metallurgy, 2014, 50(1): 69-76.
  • 5HUBER F, MELAND H, RONNING M, VENVIK H, HOLMEN A. Comparison of Cu-Ce-Zr and Cu-Zn-A1 mixed oxide catalysts for water-gas shift [J]. Topics in Catalysis, 2007, 45(1-4): 101-104.
  • 6BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications: Development of zirconia-containing Cu-Zn-AI catalysts [J]. Catalysis Today, 1999, 51(3-4): 521-533.
  • 7XU H, TAN S. Calorimetric investigation of a Cu-Zn-A1 alloy with two way shape memory [J]. Scripta Metallurgica et Materialia, 2005, 33(5): 749-754.
  • 8PELEGRINA J L, ROMERO R. Calorimetry in Cu-Zn-A1 alloys under different structural and microsla~uctural conditions [J]. Materials Science and Engineering A, 2000, 282(1-2): 16-22.
  • 9CUNIBERTI A, ROMERO R. Differential scanning calorimetry study of deformed Cu-Zn-A1 martensite [J]. Scripta Materialia, 2004 51(4): 315-320.
  • 10LONGAUER S, MAKROCZY P, JANAK G, LONGAUEROVA M. Shape memory effect in a Cu-Zn-AI alloy with dual phase a/fl microstructure [J]. Materials Science and Engineering A, 1999, 273-275: 415-419.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部