期刊文献+

Microstructure optimization of directionally solidified hypereutectic Nb-Si alloy 被引量:2

定向凝固过共晶Nb-Si基合金的组织优化(英文)
下载PDF
导出
摘要 Nb-16Si-24Ti-10Cr-2A1-2Hf alloy was directionally solidified with withdrawal rates of 1.2, 6, 18, 36 and 50 mrn/min and then heat treated at 1400, 1450 and 1500℃with withdrawal rate of 50 mm/min for 10 h. The effects of withdrawal rate and heat treatment temperature on the microstructure were studied. The microstructure of directionally solidified alloy was composed of the primary NbsSi3, Nbss/NbsSi3 eutectic cells and Cr2Nb, which distribute paralleled to the growth direction. The microstructure becomes more refined with the increasing withdrawal rate, accompany with the evolution of eutectic cells morphology. After heat treatment, Nbss phase connects and forms a continuous matrix, and the Cr2Nb phase becomes smaller and distributes more dispersedly. After heat treatment at 1450 ℃ for 10 h, the alloy achieves balance between the optimization of microstructure and alleviation of solute segregation. 采用液态金属冷却定向凝固炉制备Nb-16Si-24Ti-10Cr-2Al-2Hf合金,凝固速率分别为1.2、6、18、36、50 mm/min,随后对定向凝固速率为50 mm/min的合金进行(1400°C,10 h),(1450°C,10 h)和(1500°C,10 h)的热处理。研究了定向凝固速率和热处理温度对合金微观组织的影响。结果表明:合金的定向凝固组织主要由沿着试棒轴向生长的初生Nb5Si3相和耦合生长的Nbss/Nb5Si3共晶胞组成,在共晶胞边缘,有少量的Cr2Nb存在。横截面上共晶胞边界明显,随着凝固速率的增加,定向凝固组织明显细化,Nbss/Nb5Si3共晶胞形貌也发生变化。合金经过热处理,Nbss连成基体,部分Cr2Nb相熔解,微观成分偏析减小。经过(1450°C,10 h)热处理,实现了对过共晶Nb-Si基合金的组织优化。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2874-2881,共8页 中国有色金属学报(英文版)
基金 Project(51101005)supported by the National Natural Science Foundation of China
关键词 Nb-Si alloy directional solidification eutectic withdrawal rate microstructure heat treatment Nb—Si合金 定向凝固 共晶 抽拉速率 组织 热处理
  • 相关文献

参考文献20

  • 1PEREPEZKO J H. The hotter the engine, the better [J]. Science, 2009, 326: 1068-1069.
  • 2BEWLAY B P, JACKSON M R, LIPSITT H A. The balance of mechanical and environmental properties of a multi-element niobium-niobium-silicide-based in-situ composite [J]. Metall Mater Trans A, 2003, 34: 85-94.
  • 3BEWLAY B P, JACKSON M R, ZHAO J C, SUBRAMANIAN P R. A review of very high-temperature Nb-Si based composites [J]. Metall and Mater Trans A, 2003, 34: 2043-2052.
  • 4BEWLAY B P, JACKSON M R. The balance of mechanical andenvironmental properties of a multielement niobium-niobium silicide-based in situ composite [J]. Metall Mater Mater Trans A 1996. 27: 3801-3808.
  • 5LI Xiao-jian, CHEN Hai-feng, SHA Jiang-bo, ZHANG Hu. The effects of melting technologies on the microstmctures and properties of Nb-16Si-22Ti-2AI-2Hf-17Cr alloy [J]. Materials Science and Engineering A, 2010, 527(23): 6140-6152.
  • 6SHA Jiang-bo, LIU Jun, ZHOU Chun-gen. Effect of Cr additions on toughness, strength, and oxidation resistance of an Nb-4Si-20Ti-6Hf alloy at room and/or high temperatures [J]. Metall Mater Trans A, 2011, 42(6): 1534-1543.
  • 7JIA Li-na, LI Xiao-jian, SHA Jiang-bo, ZHANG Hu. Effects of directional solidification on microstructure and mechanical properties of Nb-14Si-22Ti-2Hf-2A1-4Cr alloy [J]. Rare Metal Materials and Engineering, 2010, 39(8): 1475-1479. (in Chinese).
  • 8KIM W Y, TANAKA H, KASAMA A, HANANDA S. Microstructure and room temperature fracture toughness of Nbss/NbsSi3 in situ composites [J]. Intermetallics, 2001, 9: 827-834.
  • 9BEWLAY B P, JACKSON M R, GIGLIOTTI M. Niobium silicide high temperature in-situ composites [J]. Intermetallic Compd Princ Pract, 2002, 3: 541-560.
  • 10GUO Hai-sheng, GUO Xi-ping. Microstructure and microhardness of directionally solidified and heat-treated Nb-Ti-Si based ultrahigh temperature alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 1283-1290.

二级参考文献20

  • 1Luo W, Shen J, Min Z, et al. Lamellar Orientation Control of TiAl Alloys under High Temperature Gradient with a Ti-43Al-3 Si Seed [J]. J. Cryst. Growth, 2008, 310(24): 5441-5446.
  • 2Yamaguchi M, lnui H, Ito K. High-temperature Structural Intermetallics[J]. Acta Mater., 2000, 48( 1 ): 307-322.
  • 3Dimiduk D M. Gamma Titanium Aiuminide Alloys--An assessment within the Competition of Aerospace Structural Materials[J]. Mater. Sci. Eng. A, 1999, 263(2): 281-288.
  • 4Kim Y W. Gamma Titanium Aluminide: Their Status and Future[J]. JOM., 1995, 47(7): 39-41.
  • 5Kishida K, Johnson D R, Masuda Y, et al. Deformation and Fracture of PST Crystals and Directionally Solidified Ingots of TiAl-based Alloys[J]. Intermetallies, 1998, 6(7-8): 679-683.
  • 6Yarnaguchi M, Johnson D R, Lee H N, et al. Directional Solidifca- tion of TiAl-base Alloys [J]. Intermetallics, 2000, 8(5-6):511-517.
  • 7Johnson D R, Inui H, Muto S, et al. Microstructural Devel- opment during Directional Solidification of a-seeded TiAI Alloys[J]. Acta Mater., 2006, 54(4): 1077-1085.
  • 8Takeyama M, Yamamoto Y, Morishima H, et al. Lamellar Orientation Control of Ti-48Al PST Crystal by Unidirectional Sofidification[J]. Mater. Sci. Eng. A, 2002, 329-331 : 7-12.
  • 9Lee H N, Johnson D R, lnui H, et al. Microstructural Control through Seeding and Directional Solidification of TiAl Alloys Containing Mo and C[J]. Acta Mater., 2000, 48(12): 3221-3233.
  • 10Johnson D R, Chih-ara K, Inui H, et al. Microstructural Control of TiAl-Mo-B Alloys by Directional Solidifica- tion[J]. Acta Mater., 1998, 46(18): 6529-6540.

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部