期刊文献+

7050-T7452锻件模拟高温服役环境下组织性能的演化 被引量:1

Evolution of microstructure and properties of 7050-T7452 alloy forging simulation in high temperature service environment
下载PDF
导出
摘要 通过拉伸试验和微观组织观察等方法对经过不同温度和时间模拟高温服役环境热暴露处理后7050-T7452锻件的室温拉伸性能以及合金金相组织、析出相的变化情况进行系统研究。结果表明:7050-T7452锻件在100-175℃下热暴露处理后,合金的强度随热暴露温度的提高和时间的延长而降低,伸长率随之增加;当热暴露温度超过125℃后,变化更为明显;随热暴露温度和时间的变化,合金的晶粒尺寸以及再结晶程度没有明显改变;当热暴露温度≤125℃时,合金晶粒内部析出相的尺寸和种类没有明显变化;随热暴露时间的增加,晶界无析出带的宽度略有增宽;当热暴露温度超过125℃时,合金晶内的析出相随温度以及热暴露时间的增加而迅速粗化,卵相的体积分数增加,晶界无析出带加宽,合金的强度明显下降。 The evolution of microstructure and properties of 7050-T7452 alloy forging simulation in high temperature service environment for different times and temperatures was studied by tensile test and transmission electron microscopy. The results show that the strength of 7050-T7452 alloy forging decreases with the thermal exposed time and temperature increasing in the range of 100-175 ℃, however, the elongation increases. The change of strength is obvious when the exposed temperature is higher than 125 ℃, and the change of grain size and recrystallization is not obvious. When the exposed temperature is lower than 125 ℃, the sizes and species of precipitates do not change obviously. The width of precipitate-free zones (PFZs) increases a little with the exposed time increasing. When the exposed temperaatre is higher than 125 ℃, the precipitates in matrix are coarser with the exposed temperature and time increasing. Meanwhile, the precipitate size and width of PFZs increase obviously, and the dominant precipitate is t/phase. The strength of alloy decreases visibly in this period.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2013年第10期2738-2746,共9页 The Chinese Journal of Nonferrous Metals
关键词 7050-T7452锻件 高温服役环境 热暴露处理 显微组织 析出相 拉伸性能 7050-T7452 alloy forging high temperature service environment thermal exposed treatment microstructure precipitate tensile properties
  • 相关文献

参考文献19

  • 1LI Cheng-gong, WU Shi-jie, DAI Sheng-long, YANG Shou-jie. Application and development of advanced aluminum alloy in aerospace industry[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 14-21.
  • 2CHEN Chang-qi. Development of ultrahigh-strength aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(S1): 22-27.
  • 3ADACHI H, OSAMURA K, OCHIA1 S. Mechanical property of nanoscale precipitate hardening aluminum alloys[J]. Scripta Materialia, 2001, 44(8): 1489-1492.
  • 4LI Zhi-hui, XIONG Bai-qing, ZHANG Yong-an, ZHU Bao-hong, WANG Feng, LIU Hong-wei. Investigation on strength, toughness and microstructure of an AI-Zn-Mg-Cu alloy pre-stretched thick plates in various ageing tempers[J]. Journal of Materials Processing Technology, 2009, 209(4): 2021-2027.
  • 5CHEN Kang-hua, FANG Hua-chan, ZHANG Zhuo, CHEN Xiang. Effect of Yb, Cr and Zr additions on recrystallization and corrosion resistance of AI-Zn-Mg-Cu alloys[J]. Materials Science and Engineering A, 2008, 497(1/2): 426-431.
  • 6DIXIT M, MISHRA R S, SANKARAN K K. Structure-property correlations in AI 7050 and AI 7055 high-strength aluminum alloys[J]. Materials Science and Engineering A, 2008, 478: 163-172.
  • 7SCHUBBE J J. Fatigue crack propagation in 7050-T7451 plate alloy[J]. Engineering Fracture Mechanics, 2009, 76(8):1037-1048.
  • 8EUNGYEONG L, YOO1NL J, SANGSHIK K. S-N Fatigue behavior of anodized 7050-T745 lproduced in different electrolytes[J]. Metallurgical and Materials Transactions A, 2012 43(6): 2002-2011.
  • 9SHA C~ CEREZO A. Early-stage precipitation in A1-Zn-Mg-Cu alloy (7050)[J]. Acta Materialia, 2004, 52(15): 4503-4516.
  • 10DORWARD R C, BEERNTSEN D J. Grain structure and quench-rate effects on strength and toughness of AA7050 A1-Zn-Mg-Cu-Zr alloy plate[J]. Metallurgical and Materials Transactions A, 1995, 26(9): 2481-2484.

二级参考文献10

  • 1[11]Lorimer G W. The Mechanism of phase transformations in crystalline solids[J]. Inst Metals, 1968 (1):36 - 41.
  • 2[12]Stiller K, Warren P J, Hansen V, et al. Investigation of precipitation in an Al-Zn-Mg alloy after twostep ageing treatment at 100 ℃ and 150 ℃[J]. Material Science and Engineering A, 1999, A270: 55 - 63.
  • 3[13]Danh D. A TEM study of microstructural changes during retrogression and reageing in 7075 aluminum[J]. Metallurgical Transactions, 1983, 14A (9):1843 - 1850.
  • 4[1]David A L, Ray M H. Aluminum alloy development efforts for compression dominated structure of aircraft[J]. Light Metal Age, 1991, 2(9): 11-15.
  • 5[4]Park J K, Ardell A J. Affect of retrogression and reaging treatments on the microstructure of Al-7075-T651[J]. Metallurgical Transactions, 1984, 15A(8):1531 - 1543.
  • 6[5]obinson J S, Tanner D A. Retrogression reaging and residual stresses in 7010 forgings[J]. Fatigue Fracture Engineering Material Structure, 1999, 22: 51 - 58.
  • 7[6]Viana F, Pinto A M P, Santos H M C. Retrogression and reageing of 7075 aluminum alloy: Microstructural characterization[J]. Materials Processing Technology,1999, 92-93: 54-59.
  • 8[8]Wolverton C. Crystalstructure and stability of complex precipitation phase in Al-Cu-Mg-Si and Al-Zn-Mg alloys[J]. Acta Mater, 2001, 49: 3129 - 3142.
  • 9[9]Alder P N, Deiasi R. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7075 aluminum alloy[J]. Metall Trans,1972, 3: 3191-3200.
  • 10[10]Jeglitsch F, Ratzi R. Strength and Toughness of high-strength Al-alloys[J]. Mater Sci Forum, 1987,13/14:157 - 174.

共引文献50

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部