期刊文献+

二氧化锰纳米材料在锂离子电池负极材料中的应用 被引量:6

Applications of MnO_2 nanomaterials as an anode for lithiumion batteries
原文传递
导出
摘要 锂离子电池作为清洁、高效、便携的储能方式之一,在很多领域都具有广阔的应用前景.如何实现高容量、大功率和长寿命的锂离子电池,依赖于其中各核心部件的结构设计和性能提升.MnO2由于其较高的理论比容量、较低的放电平台、价格低廉和环境友好等优点,在锂离子电池负极材料的应用上具有很大的潜力.针对MnO2作为负极材料可能存在的问题,可以通过纳米化、孔洞化和增强导电性等多种策略,改变电极材料的结构和成分以适应充放电过程,实现锂电性能的不断改善和提高.本文总结了近年来基于MnO2纳米材料的锂离子电池负极材料的研究成果,并对其未来的研究方向进行了展望. Lithium-ion batteries as one of clean, portable and high-efficiency energy-storage devices, have exhibited promising potentials in many fields. MnO2 as an anode of lithium-ion batteries shows a lot of advantages, such as a high theoretical capacity, a low electrochemical motivation force, a high abundance, as well as a low contamination to environment. But MnO2 also faces to a couple of challenges, including a poor electronic conductivity and a severe volume change during the discharge/charge processes. In order to address these issues, several strategies have been applied to control the shape, size, structure and surface modification of MnO2 for the improved performances in lithium-ion batteries. The related studies have been summarized and discussed in this mini-review. Finally, there are still many ambiguous scenes for MnO2 as an anode, which deserves the future efforts on this topic.
出处 《科学通报》 CAS CSCD 北大核心 2013年第31期3108-3114,共7页 Chinese Science Bulletin
基金 国家重点基础研究发展计划(2011CB935901) 国家自然科学基金重点项目(91022033),国家自然科学基金(51172076,21203111) 山东省自然科学杰出青年基金(JQ201205) 山东大学自主创新基金(2012ZD007)资助
关键词 锂离子电池 负极材料 二氧化锰 纳米结构 lithium-ion battery, anode materials, Mn02, nanomaterials
  • 相关文献

参考文献24

  • 1Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22:E170-E192.
  • 2Wu M S, Chiang P C, Lee J T, et al. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J Phys Chem B, 2005, 109:23279-23284.
  • 3Wu M S, Chiang P C J. Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries. Elec- trochem Commun, 2006, 8:383-388.
  • 4Li J, Xi B, Zhu Y, et al. A precursor route to synthesize mesoporous 7-MnO2 microcrystals and their applications in lithium battery and water treatment. J Alloy Compd, 2011,509:9542-9548.
  • 5NuLi Y, Zhang P, Guo Z, et al. Preparation of ct-Fe203 submicro-flowers by a hydrothermal approach and their electrochemical perfor- mance in lithium-ion batteries. Electrochim Acta, 2008, 53:4213-4218.
  • 6Wang X, Wu X L, Guo Y G, et al. Synthesis and lithium storage properties of Co304 nanosheet-assembled multishelled hollow spheres. Adv Funct Mater, 2010, 20:1680-1686.
  • 7Wang B, Wu X L, Shu C Y, et al. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion bat- teries. J Mater Chem, 2010, 20:10661-10664.
  • 8Li B X, Rong G X, Xie Y, et al. Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li^+ batteries. Inorg Chem, 2006, 45:6404-6410.
  • 9Zhao J, Tao Z, Liang J, et al. Facile synthesis of nanoporous ]t-MnO2 structures and their application in rechargeable Li-ion batteries. Crystal Growth Design, 2008, 8:2799-2805.
  • 10Li L, Nan C, Lu J, et al. ct-MnO2 nanotubes: High surface area and enhanced lithium battery properties. Chem Commun, 2012, 48: 6945-6947.

同被引文献49

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部