期刊文献+

锂离子电池电极/电解质材料的固体核磁共振研究进展 被引量:3

Solid-state NMR study of electrode/electrolyte materials for lithium-ion batteries
原文传递
导出
摘要 固体核磁共振(NMR)技术可探测固态材料中目标原子核周围的化学环境,是一种研究短程结构信息灵敏的表征手段.通过高转速魔角旋转6,7Li NMR谱,2D6,7Li EXSY谱以及弛豫时间T1,T2的测定,可获得锂离子电池电极/电解质材料的微观结构和离子扩散动力学信息,并可用于研究锂离子电池正负极材料在充放电过程中的结构变化,为锂离子电池电极/电解质材料的设计与发展提供理论支持.本文综述了近年来固体NMR技术在锂离子电池正负极材料、固体电解质及固体电解质界面膜(SEI)研究中的应用和发展. Solid state NMR can probe the surrounding chemical environment of nucleus in the solid materials, which is a useful characterization tool for studying the local structure informations. Through high magic angle spinning (MAS) 6.7Li NMR, 2D 6.7Li EXSY spectra and the testing of T1, T2, we can analyze the microstructures of batteries electrode/electrolyte materials and the dynamics of lithium ions, therefor understand the structure evolution of cathode/anode materials over charge/discharge process, which provides a theoretical support for the design and development of electrode/electrolyte materials for lithium-ion batteries. In this paper, we review the recent development and application of solid state NMR techniques in the study of cathode/anode, solid electrolyte materials and solid electrolyte interface film.
出处 《科学通报》 EI CAS CSCD 北大核心 2013年第32期3287-3300,共14页 Chinese Science Bulletin
基金 国家重点基础发展研究计划(2011CB935903) 国家自然科学基金重点项目(21233004)资助
关键词 锂离子电池 费米接触位移 顺磁性材料 固体电解质 SEI膜 固体NMR lithium-ion battery, Fermi contact shift, parmagnetic materials, solid electrolyte, SEI film, solid state NMR
  • 相关文献

参考文献103

  • 1Padhi A, Nanjundaswamy K, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188-1194.
  • 2Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499.
  • 3Armand M, Michot C, Ravet N, et al. Lithium insertion electrode materials based on orthosilicate derivatives. United States Patent, 6085015, 2000-7-4.
  • 4Amine K. Active material for lithium batteries. United States Patent, 2002/0039681 A1, 2002-4-4.
  • 5Whittingham M S. Lithium batteries and cathode materials. Chem Rev, 2004, 104: 4271-4302.
  • 6Bruce P G, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 2930-2946.
  • 7Scrosati B, Garche J. Lithium batteries: Status, prospects and future. J Power Sources, 2010, 195: 2419-2430.
  • 8Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci, 2011, 4: 3223-3242.
  • 9Grey C P, Lee Y J. Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci, 2003, 5: 883-894.
  • 10张忠如,杨勇,刘汉三.锂离子电池电极材料固体核磁共振研究进展[J].化学进展,2003,15(1):18-24. 被引量:6

二级参考文献71

  • 1[20]Lee Y J, Eng C, Grey C P. J. Electrochem. Soc., 2001, 148: 249-257
  • 2[21]Garcia B, Barboux P, Ribot F. Sold State Ionics, 1995, 80: 111-118
  • 3[22]Alcantara R, Lavela P, Tirado J L, et al. J. Electroanal. Chem., 1998, 454:173-181
  • 4[23]Levasseur S, Menetrier M, Suard E, et al. Solid State Ionics, 2000,128 :11-24
  • 5[24]Carewska M, Scaccia S, Fausto Croce, et al. Solid State Ionics, 1997,9 3:227-237
  • 6[25]Menetrier M, Rougier A, Delmas C. Solid State Commun., 1994,90:439-4 42
  • 7[26]Claire M, Jerome H, Pierre G. Inorg. Chem., 1995, 34:1773-1778
  • 8[27]Imanishi N, Fujiyoshi M, Takeda Y, et al. Solid State Ionics, 1999,118 :121-128
  • 9[28]Prado G, Fournes L, Delmas C. Solid State Ionics, 2000,138:19-30
  • 10[29]Delmas C, Menetrier M, Croguennec L, et al. Electrochim. Acta, 1999,4 5:243-253

共引文献13

同被引文献18

  • 1Armand M, Tarascon J M. Building better batteries[J]. Na- ture, 2008, 451(7179): 652-657.
  • 2Palomares V, Casas-Cabanas M, Castillo-Martinez E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312-2337.
  • 3Pan H, Hu Y S, Chen L. Room-temperature stationary sodi- um-ion batteries for large-scale electric energy storage [J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
  • 4Barpanda P, Chotard J N, Recham N, et al. Structural, trans- port, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes [J]. Inor- ganic Chemistry, 2010, 49(16): 7401-7413.
  • 5Ellis B L, Makahnouk W R M, Makimura Y, et al. A multi- functional 3.5 V iron-based phosphate cathode for recharge- able batteries[J]. Nature Materials, 2007, 6(10): 749-753.
  • 6Wu X, Zheng J, Gong Z, et al. Sol-gel synthesis and electro- chemical properties offluorophosphates Na2Fel_xMnPO4F/C(x = O, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery [J]. Journal of Materials Chemistry, 2011, 21(46): 18630-18637.
  • 7Kim S W, Seo D H, Kim H, et al. A comparative study on Na2MnPOaF and Li2MnPO4F for rechargeable battery cathodes[J]. Physical Chemistry Chemical Physics, 2012, 14 (10): 3299-3303.
  • 8Gong Z L, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries [J]. Energy & Environmental Science, 2011, 4(9): 3223-3242.
  • 9Grey C P, Lee J. Lithium MAS NMR studies of cath- ode materials for lithium-ion batteries[J]. Solid State Sci- ences, 2003, 5(6): 883-894.
  • 10Jian Z, Yuan C, Han W; et al. Atomic structure and kinet- ics of NASICON NaV2(PO4)z cathode for sodium-ion- batteries[J]. Advanced Functional Materials, 2014, doi: 10.1002/adfin.201400173.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部