期刊文献+

计算机模拟咪唑型离子液体电解质:C2位甲基化的作用

Molecular dynamics simulation of imidazolium-based ionic liquids doped with lithium salt:The effects of C2-methylation
原文传递
导出
摘要 使用极化分子力场对两种锂盐浓度均为0.32 mol/kg的咪唑型离子液体电解质体系,LiFSI-[EMIM][FSI]和LiFSI-[EMMI][FSI],进行了分子动力学模拟.通过分析Li+离子和emim+/emmi+阳离子的溶剂化层结构,研究发现Li+与阴离子FSI较强的静电作用受咪唑阳离子结构变化的扰动微小,C2位甲基化明显改变的是离子液体中离子间的作用结构.结合自相关函数的计算,我们推测C2-H的消失增大了阴离子FSI同时与更多emmi+阳离子作用的倾向,增强了LiFSI-[EMMI][FSI]体系的整体网络结构.这是C2位甲基化造成体系离子电导率降低的主要原因.最后,从Li+的两种传输方式出发,着重分析了微观结构与Li+传输性能间的相互关联. Molecular dynamics simulations with a polarized force field were performed on two classes of imidazolium-based ionic liquid electrolytes, LiFSI-[EMIM][FSI] and LiFSI-[EMMI][FSI], with the lithium salt concentration of 0.32 mol/kg. Study on the solvation shell of Li+ and emim+/emmi+ shows that the strong electrostatic interaction between Li+ and FSI- could be marginally disturbed by the C2-methylation of imidazolium cation, which evidently affects the interaction among ions of ionic liquid. The investigation of structural and dynamical properties found that the disappearance of C2-H makes FSK anions to interact with several imidazolium cations simultaneously, and thus favors the formation of the interaction network in LiFSI-[EMMI][FSI] system. The above reason is the primarily responsible for slower ionic conductivity of LiFSI-[EMMI][FSI] than that of LiFSI-[EMIM][FSI]. Finally, the connection between microstructure and Li+ transport performance is emphasized in terms of two different transport mechanism.
出处 《科学通报》 EI CAS CSCD 北大核心 2013年第32期3341-3349,共9页 Chinese Science Bulletin
基金 国家自然科学基金(21073097 21203100 21373118) 天津市应用基础及前沿技术研究计划(12JCYBJC13900 13JCQNJC06700) 中央高校基本科研业务费专项资金资助
关键词 锂电池 电解质 分子动力学模拟 离子液体 C2位甲基化 lithium battery, electrolytes, molecular dynamics simulation, ionic liquids, C2-methylation
  • 相关文献

参考文献41

  • 1Holzapfel M, Jost C, Novák P. Stable cycling of graphite in an ionic liquid based electrolyte. Chem Commun, 2004, 18: 2098-2099:.
  • 2Seki S, Kobayashi Y, Miyashiro H, et al. Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J Phys Chem B, 2006, 110: 10228-10230:.
  • 3Lu Y, Das S K, Moganty S S, et al. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv Mater, 2012, 24: 4430-4435:.
  • 4Monteiro M J, Bazito F F C, Siqueira L J A, et al. Transport coefficients, raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid. J Phys Chem B, 2008, 112: 2102-2109:.
  • 5Wang Y, Zaghib K, Guerfi A, et al. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochim Acta, 2007, 52: 6346-6352:.
  • 6Borodin O, Gorecki W, Smith G D, et al. Molecular dynamics simulation and pulsed-field gradient NMR studies of bis(fluorosulfonyl) imide (FSI) and bis[(trifluoromethyl)sulfonyl]imide (TFSI)-based ionic liquids. J Phys Chem B, 2010, 114: 6786-6798:.
  • 7Bazito F F C, Kawano Y, Torresi R M. Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochim Acta, 2007, 52: 6427-6437:.
  • 8Hayashi K, Nemoto Y, Akuto K, et al. Alkylated imidazolium salt electrolyte for lithium cells. J Power Sources, 2005, 146: 689-692:.
  • 9Moganty S S, Baltus R E, Roy D. Electrochemical windows and impedance characteristics of [Bmim+][BF4-] and [Bdmim+][BF4-] ionic liquids at the surfaces of Au, Pt, Ta and glassy carbon electrodes. Chem Phys Lett, 2009, 483: 90-94:.
  • 10Fumino K, Wulf A, Ludwig R. Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew Chem Int Ed, 2008, 47: 8731-8734:.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部