期刊文献+

珠江河口地形致动力结构研究——以崖门为例 被引量:1

Topography-induced dynamic structure in the Pearl River: a case study in the Yamen outlet
下载PDF
导出
摘要 局部地形对于河口动量和能量平衡有重要作用,影响了潮波性质和物质输运特性。选取珠江河口崖门这一典型的地貌单元,通过水尺和座底式支架的观测,对其特殊地形边界影响下的动力结构进行了探讨。结果表明:(1)过水面积的缩窄导致崖门口处形成局部高水位区,来流方向水位壅高,去流方向水位梯度增大;(2)忽略斜压作用的情况下,由水位梯度所产生的正压项是主要的动力项。沿河道方向的二维垂向平均动量平衡中,急流时刻主要是正压项和对流加速度项平衡,憩流时刻主要是正压项和局地加速度项平衡;(3)地形变化所产生的形态阻力比床面粗糙所产生的肤面阻力要大数倍到一个数量级。 The local topography plays a significant role in estuarine momentum balance,tidal energy balance,tidal properties and sediment transport.Taking the typical geomorphic unit in the Pearl River estuary named Yamen as an example,water level guaging and bottom-mounted tripod measurements were conducted to explore the dynamic structure induced by the topographic boundary.The results show that:(1)the narrowing of the cross-sections Yamen in area leads to a backwater in the opposite-flow direction,increaseing the water level gradient in the downflow direction.(2)The baratropic force induced by the water level gradient is a primary term in the momentum equation.The depth-averaged along-channel momentum balance is achieved between baratropic force and advection during the peak tide,and between baratropic force and local acceleration during the slack tide.(3)The form drag induced by topographic features is several times to one order in magnitude larger than the skin drag caused by bed roughness.
出处 《海洋学报》 CAS CSCD 北大核心 2013年第5期29-36,共8页
基金 国家自然科学基金(41006050 41176067) 中山大学青年教师培育项目(11lgpy59) 国家重大科学研究计划(2013CB956502) 珠江水利委员会珠江水利科学研究院开放研究基金(2013KJ07) 中山大学青年教师起步计划
关键词 地形边界 动力结构 动量平衡 珠江河口 topographic boundary dynamic structure momentum balance Pearl River Estuary
  • 相关文献

参考文献21

  • 1吴超羽,任杰,包芸,史合印,雷亚平,何志刚,唐兆民.珠江河口“门”的地貌动力学初探[J].地理学报,2006,61(5):537-548. 被引量:32
  • 2任杰,吴超羽,包芸.珠江虎门口动力结构研究[J].中山大学学报(自然科学版),2006,45(3):105-109. 被引量:9
  • 3刘欢,吴超羽,包芸.珠江河口的能量传播和能量耗散[J].热带海洋学报,2011,30(3):16-23. 被引量:6
  • 4Wu C Y, Wei X, Ren J, et al. Morphodynamics of the rock-bound outlets of the Pearl River estuary, South China A preliminary studyJ. Journal of Marine Systems, 2010, 82: slT-s27.
  • 5Edwards K A, Maccready P, Mourn J N, et al. Form drag and mixing Due to tidal flow past a sharp pointFJ]. Journal of Physical Oceanography, 2004, 34:1297-1312.
  • 6Mecabe R M, Maccready P, Pawlak G. Form drag due to flow separation at a headland[J. Journal of Physical Oceanography, 2006, 36 : 2136- 2152.
  • 7Godin G. The propagation of tides up rivers with special considerations on the upper Saint Lawrence RiverFJ. Estuarine, Coastal and Shelf Sci- ence, 1999, 48(3): 307-324.
  • 8Rolinski S, Eichweber G. Deformations of the tidal wave in the Elbe Estuary and their effect on suspended particulate matter dynamics[J]. Physics and Chemistry of the Earth-Part B: Hydrology, Oceans and Atmosphere, 2000, 25(4) : 355-358.
  • 9Geyer W R, Signell R P. Measurements of tidal flow around a headland with a shipboard acoustic Doppler current profiler[J]. Journal of Geophysi- cal Research, 1990, 95(3). 3189-3197.
  • 10Geyer W R. Three-dimensional tidal flow around headlandsJ. Journal of Geophysical Research, 1993, 98(1) : 955-966.

二级参考文献148

共引文献105

同被引文献28

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部