期刊文献+

基于贝叶斯分析的不完全维修条件下可修系统的参数估计 被引量:1

Parameter Estimation for a Repairable System under Imperfect Maintenance Based on Bayesian Analysis
原文传递
导出
摘要 可靠性和维修性的参数估计在可修系统建模及维修决策中具有非常重要的地位.不完全维修条件下可修系统的故障时间既不相等也不服从独立分布,这使得可修系统维修模型的参数估计变得十分困难.针对此问题,对第一次故障服从威布尔分布,故障之后进行Kijima类型I的修复性维修和Kijima类型I的预防性维修的可修系统进行了研究,应用贝叶斯分析对威布尔分布的形状参数β、尺度参数η、修复性维修的不完全维修因子ar以及预防性维修的不完全维修因子ap进行估计.仿真算例表明,该方法可以较为准确的对可靠性和维修性参数进行估计. Estimation of reliability and maintainability parameters is important in modeling of repairable systems and determining maintenance policies. The failure times of repairable systems under imperfect maintenance are neither identically nor independently distributed, which makes parameter estimation difficult. The paper research on the repairable system, which follows a Weibull distribution in the first failure and experiences Kijiama Type?imperfect corrective maintenance and Kijiama Type?imperfect preventive maintenance after failure, and estimates the shape parameter of the Weibull distribution β, the scale parameter of the Weibull distribution 71, the imperfect maintenance factor for preventive maintenance ar and the imperfect maintenance factor for preventive maintenance ap. The results of simulated example indicate the proposed method is precision to estimate the reliability and maintainability parameters.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第21期136-142,共7页 Mathematics in Practice and Theory
关键词 不完全维修 参数估计 贝叶斯分析 拒绝性抽样法 imperfect maintenance parameter estimation Bayesian analysis rejection sampiing algorithm
  • 相关文献

参考文献16

  • 1孔德良,王少萍.可修系统的可用度分析方法研究[J].北京航空航天大学学报,2002,28(2):129-132. 被引量:24
  • 2金星,洪延姬,文明,李俊美.服从任意分布的部件可用度快速计算方法[J].中国空间科学技术,2002,22(5):67-71. 被引量:5
  • 3Dekker 1~ Applications of maintenance optimization models: a review and analysis[J]. Reliability Engineering and System Safety, 1996,.51(3): 229-240.
  • 4Cho D I, and Parlar, Mahmut. A survey of maintenance models for multi-unit systems [J]. European Journal of Operational Research, 1991, 51(1): 1-23.
  • 5Kijima M, Some results for repairable systems with general repair[J]. Journal of Applied probability,1989, 26: 89-102.
  • 6Sarkar J, Sarkar S. Availability of a periodically inspected system under perfect repair[J]. Journal of Statistical Planning and Inference, 2000, 91: 77-90.
  • 7Brown M, and Proschan F. Imperfect repair[J]. Journal of Applied Probability,1983, 20:851-859.
  • 8Pham H, and Wang H. Imperfect Maintenance[J]. European Journal of Operational Research, 1996, 49(3): 425-438.
  • 9Crow, Larry H Evaluating the reliability of repairable systems [C]// Proceedings of the Annual Reliability and Maintainability Symposium, IEEEE 1990, 275-279.
  • 10Seo J H. et al. Lifetime and reliability estimation of repairable redundant system subject to periodic alternation[J]. Reliability Engineering and System Safety, 2003, 80(2): 197-204.

二级参考文献5

  • 1李庆杨.数值分析[M].华中理工大学出版社,1994,5.215-219.
  • 2程明华.软硬件动态故障树分析与CAD及软件可靠性早期预计方法验证研究[M].北京:北京航空航天大学自动控制系,1999..
  • 3孔德良.软硬件容错系统的可信性综合分析研究[M].北京:北京航空航天大学自动控制系,2001..
  • 4姚一平 李沛琼.可靠性与余度技术[M].北京:航空工业出版社,1991..
  • 5程明华 姚一平.动态故障树分析方法在容错计算机系统中的应用.中国航空学会控制与应用第八届学术年会[M].,1998..

共引文献27

同被引文献17

  • 1陈凤腾,左洪福,倪现存.基于广义更新过程的航空备件需求和应用[J].应用科学学报,2007,25(5):526-530. 被引量:9
  • 2Barlow R E, Hunter L C. Optimum preventive maintenance policy[J]. Operations Research, 1960, 8: 90-100.
  • 3Brown M, Proschan F. Imperfect repair[J]. Journal of Applied Probability, 1983, 20: 851-859.
  • 4叶培钒.不完全维修前提下基于状态维修策略最优化模型研究[D].北京:清华大学,2011.
  • 5Monika T, Rajiv N R, Nomesh B. Imperfect repair modeling using Kijima type generalized renewal process[J]. Reliability Engineering and System Safety, 2014, 124: 24-31.
  • 6Kijima M, Sumita U. A useful generalization of renewal theory: Counting processes governed by non-negative Markovian increments[J]. Journal of Applied Probability, 1986, 23(1): 71-88.
  • 7Dorado C, Hollander M, Sethuraman J. Nonparametric estimation for a general repair model[J]. Annals of Statistics, 1997, 25:1140 1160.
  • 8Krivtsov V. A Monte-Carlo approach to modelling and estimation of the generalized renewal process in repairable system reliability analysis[D]. City of College Park: University of Maryland, 2000.
  • 9Yanez M, Joglar F, Modarres M. Generalized renewal process for analysis of repairable Systems with limited failure experience[J]. Reliability Engineering ~ System Safety, 2002, 77: 167-180.
  • 10Shirmohammadi H, Zhang Z G, Love E. A computational model for determining the optimal preventive malnte~ nance policy with random breakdowns and imperfect repairs[J]. IEEE Transactions on Reliability, 2007, 56(2): 332-339.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部