摘要
基于T-S模型,对基于采样数据的非线性奇异摄动系统的鲁棒H_∞控制问题进行研究.对于T-S模型中规则后件中的各个局部线性模型,利用"输入滞后"(input delay)方法,将基于采样数据的离散形式的控制律转化为带滞后的连续形式的控制律.在此控制律之下,局部闭环系统成为一个变时滞的连续奇异摄动系统.在对此闭环系统的稳定性和L_2增益特征进行分析的基础上,以LMI的形式给出了满足要求的控制律满足的条件.然后将各个局部线性模型的控制律利用模糊推理方法 "合成"为系统总的控制律.
Based on T-S fuzzy model, state-feedback robust H∞ control problem for non-linear singularly perturbed systems is studied. For each individual local linear model in T-S fuzzy model, the recent "input delay" approach to sampled-data control is applied, where the closed-loop system is represented as a continuous one with time-varying input delay. Linear matrix inequalities (LMIs) for solution of robust Hoo control problem are derived via input-output approach to stability and L2-gain analysis of time-delay systems. The resulting overall controller, which is nonlinear in general, is a fuzzy "blending" of each individual linear controller.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第21期246-253,共8页
Mathematics in Practice and Theory
关键词
奇异摄动系统
鲁棒H∞控制
采样控制
T—S模型
singularly perturbed system
robust H∞ control
sampled'data control
T-S model