期刊文献+

同型产乙酸菌株CA3及其发酵葡萄糖产乙酸条件优化 被引量:2

Homoacetogenic Strain CA3 and Its Optimization Condition for Acetate Yield from Glucose by Fermentation
原文传递
导出
摘要 同型产乙酸菌纯培养物的获得,可为研究其在厌氧生物处理系统中的生理生态功能以及生产化工溶剂乙酸提供种质资源.以CO2为碳源,采用改良Hungate厌氧技术,从厌氧活性污泥中分离得到一株同型产乙酸菌CA3.该菌株为严格厌氧,卵形,G+,可利用H2/CO2产乙酸,也能发酵葡萄糖、果糖等产生乙酸.16SrRNA基因序列比对及系统发育树构建结果表明,CA3隶属Blautia sp..菌株CA3能在20~45℃的温度范围内生长,最适生长温度为35℃,最适初始pH值为8.0.在最适条件下,菌株CA3利用H2/CO2产乙酸速率可达8.92mg/(L·h);以酵母粉作为氮源发酵葡萄糖时,发酵体系的乙酸浓度可达1370mg/L. Germplasm resources of homoacetogens are not only the basis for the production of chemical solvent acetic acids but also important for investigating their ecophysiological functions in anaerobic digestion systems. With COz as the carbon source, an anaerobic bacterium strain CA3 was isolated from the anaerobic activated sludge by the modified Hungate anaerobic technique. The strain CA3 is a strictly anaerobic, gram-positive and oval-shaped acetogenic bacterium. This bacterium could metabolize H#CO2 to acetate, and was able to ferment glucose and fructose with acetate as a major product. The phylogenetic analysis based on 16SrRNA gene sequence indicates that the strain CA3 affiliates to the genus Blautia sp.. This strain could grow with temperature in the range from 20℃ to 45℃. With the optimum temperature of 35℃ and the initial pH value of 8.0, an acetate producing rate of 8.92mg/(L.h) was obtained in its pure euhure with HJCO2 as the carbon source. The most feasible nitrogen source for the strain CA3 to ferment glucose is the yeast extract and the acetate producing rate reaches 1370mg/L in its pure culture.
出处 《科技导报》 CAS CSCD 北大核心 2013年第31期20-24,共5页 Science & Technology Review
基金 国家自然科学基金项目(51178136)
关键词 同型产乙酸菌 厌氧发酵 产乙酸 菌株 homoacetogenic bacteria anaerobic fermentation acetate production strain
  • 相关文献

参考文献20

  • 1Mcinerney M J, Struchtemeyer C G, Sieber J, et al. Physiology, ecology, phylogeny, and genomics of microoganisms capable of syntrophic metabolism[J]. New York Academy of Sciences, 2008, 1125(1): 58-72.
  • 2Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiology and Molecular Biology Reviews, 1997, 61 (2):262-280.
  • 3Banks C J, Wand Z. Development of a two phase anaerobic digester for the treatment of mixed abattoir wastes[J]. Water Science and Technology, 1999, 40(1): 69-76.
  • 4Siriwongrungson V, Zeng R J, Angelidaki I. Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis [J]. WaterResearch, 2007, 41(18): 4204-4210.
  • 5Kotsyurbenko O R, Glagolev M V, Nozhevnikova A N, et al. Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature[J]. FEMS Microbiology Ecology, 2001, 38(2/3): 153- 159.
  • 6Lee M J, Zinder S H. Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenieally and in a syntrophic acetate-oxidizing coculture[J]. Archives of Microbiology, 1988, 150(6): 513-518.
  • 7Schntirer A, Schink B, Svensson B H. Clostridium ultunense sp. nov., a mesopbilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium [J]. International Journal of Systematic Bacteriology, 1996, 46(4): 1145-1152.
  • 8Ryan P, Forbes C, Co||eran E. Investigation of the diversity of homoace- togenic bacteria in mesophilic and tbermophilic anaerobic sludges using the formyltetrahydrofolate synthetase gene[J]. Water Science & Technology, 2008, 57(5): 675-680.
  • 9Guo Wei, Liu Cheng, Zou Shaolan, et al. Chinese Journal of Applied & Enviromental Biology, 2006, 12(6): 874-877.
  • 10Ni B J, Liu H, Nie Y Q, et aL Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches [J]. Biotechnology and Bioengineering, 2011, 108(2): 345-353.

同被引文献31

  • 1郭蔚,刘成,邹少兰,张敏华.同型乙酸菌研究进展及应用前景[J].应用与环境生物学报,2006,12(6):874-877. 被引量:8
  • 2DRAKE H L, G??NER A S, DANIEL S L. Old acetogens, new light [J]. Annals of the New York Academy of Sciences, 2008, 1125 (1): 100-128. DOI: 10.1196/annals.1419.016.
  • 3SCHINK B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiology and Molecular Biology Reviews, 1997, 61 (2): 262-280. DOI: 1092-2172/97/$04.0010.
  • 4BANKS C J, WANG Z. Development of a two phase anaerobic digester for the treatment of mixed abattoir wastes [J]. Water Science and Technology, 1999, 40 (1): 69-76. DOI: 10.1016/S0273-1223(99)00365-0.
  • 5MCINERNEY M J, STRUCHTEMEYER C G, SIEBER J, et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism [J]. Annals of the New York Academy of Sciences, 2008, 1125 (1): 58-72. DOI:10.1196/annals.1419.005.
  • 6NI B J, LIU H, NIE Y Q, et al. Coupling glucose fermentation and homoacetogenesis for elevated acetate production: experimental and mathematical approaches [J]. Biotechnology and Bioengineering, 2011, 108 (2): 345-353. DOI: 10.1002/bit.22908.
  • 7DANIELL J, K?PKE M, SIMPSON S D. Commercial biomass syngas fermentation [J]. Energies, 2012, 5 (12): 5372-5417. DOI: 10.3390/en5125372.
  • 8LATIF H, ZEIDAN A A, NIELSEN A T, et al. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms [J]. Current Opinion in Biotechnology, 2014, 27: 79-87. DOI: 10.1016/j.copbio.2013.12.001.
  • 9WIERINGA K T. The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria [J]. Antonie van Leeuwenhoek, 1939, 6 (1): 251-262.
  • 10DRAKE H L, KüSEL K, MATTHIES C. Acetogenic prokaryotes [J]. Prokaryotes, 2006, (2): 354-420. DOI: 10.1007/0-387-30742-7_13.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部