期刊文献+

有限缓冲区流水车间调度的混合人工蜂群算法 被引量:13

Hybrid artificial bee colony algorithms for flowshop scheduling problem with limited buffers
下载PDF
导出
摘要 针对以最大完工时间为目标的有限缓冲区流水车间调度问题,提出有效的混合人工蜂群算法。采用WPFE启发式算法进行种群的初始化,以提高初始种群的质量。将遗传算法应用到离散人工蜂群算法的引领蜂阶段,设计了基于嵌入结构、串行结构、协同结构、并行结构、概率选择结构和双种群结构的六种混合调度算法。基于插入和交换邻域的邻域搜索算法进一步增强了混合算法的局部开挖能力。通过仿真实验证明了所提算法的高效性和优越性。 Aiming at the limited buffer flow shop scheduling problem with maximum makespan as objective, an effec- tive Hybrid Artificial Bee Colony (HAP, C) algorithm was proposed. The population was initialized by WPFE heu- ristic algorithm to improve the quality of initial population. The genetic algorithm was introduced into the employed bee stage of artificial bee colony to design six hybrid scheduling algorithms based on embedded structure, collabora- tive structure, serial structure, concurrent structure, probability selection structure and bi-group structure. To en- hance the algorithm's exploitation ability, an effective local search method based on insert and swap neighborhood was embedded in HABC. The computation results demonstrated the effectiveness and superiority of the proposed HABC.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2013年第10期2510-2520,共11页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61174187 61104179) 教育部高等学校基本科研业务费资助项目(N110208001) 东北大学科研启动基金资助项目(29321006) 辽宁省自然科学基金资助项目(2013020016) 山东省智能信息处理与网络实验室资助项目~~
关键词 有限缓冲区 流水车间调度问题 人工蜂群算法 遗传算法 混合算法 邻域搜索算法 limited buffers flow shop scheduling problem artificial bee colony algorithm genetic algorithms hy-brid algorithms neighborhood search algorithm
  • 相关文献

参考文献3

二级参考文献28

  • 1钟伟才,刘静,焦李成.多智能体遗传算法用于线性系统逼近[J].自动化学报,2004,30(6):933-938. 被引量:25
  • 2GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 3Chu C, Proth J M, Wang C. Improving job-shop schedules through critical pairwise exchanges. International Journal of Production Research, 1998, 36(3): 683-694.
  • 4Nowicki E, Smutnicki C. A fast taboo search algorithm for the job shop scheduling. Management Science, 1996, 42(6):797-813.
  • 5Shi G Y. A genetic algorithm applied to a classic job-shop scheduling problem. International Journal of Systems Science, 1997, 28(1): 25-32.
  • 6Laarhoven P V, Aarts E, Lenstra J K. Job shop scheduling by simulated anncaling. Operations Research, 1992, 40:113-125.
  • 7Corce F D, Tadei R, Volta G. A genetic algorithm for the job shop problem. Computers and Operations Research, 1995,22:15-24.
  • 8Amico M D, Trubian M. Applying tabu search to the job shop scheduling problems. Annual Operations Research,1993, 40:231-252.
  • 9THORNTON H W, HUNSUCKER J L. A new heuristic for minimal makespan in flow shops with multiple processors and no intermediate storage[J]. European Journal of Operational Research, 2004, 152(1): 96-114.
  • 10HALL N G, SRISKANDARAJAH C. A survey of machine scheduling problems with blocking and no-wait in process[J]. Operations Research, 1996, 44(3): 510-525.

共引文献63

同被引文献104

  • 1王凌,张亮.有限缓冲区流水线调度的多搜索模式遗传算法[J].计算机集成制造系统,2005,11(7):1041-1046. 被引量:13
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3Karaboga D. An idea based on honey bee swarm for numerical optimization[R] . Kayseri:Erciyes University, 2005.
  • 4Szeto W Y, Wu Yongzhong, Ho S C. An artificial bee colony algorithm for the capacitated vehicle routing problem[J] . European Journal of Operational Research, 2011, 215(1):126-135.
  • 5Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J] . Applied Mathematics and Computation, 2009, 214(1):108-132.
  • 6Zhu Guopu, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J] . Applied Mathematics and Computation, 2010, 217(7):3166-3173.
  • 7Alatas B. Chaotic bee colony algorithms for global numerical optimization[J] . Expert Systems with Applications, 2010, 37(8):5682-5687.
  • 8Kang Fei, Li Junjie, Ma Zhenyue. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions[J] . Information Sciences, 2011, 181(16):3508-3531.
  • 9Gao Weifeng, Liu Sanyang. A modified artificial bee colony algorithm[J] . Computers & Operations Research, 2012, 39(3):687-697.
  • 10Gao Weifeng, Liu Sanyang. Improved artificial bee colony algorithm for global optimization[J] . Information Processing Letters, 2011, 111(17):871-882.

引证文献13

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部