期刊文献+

网络舆情监测系统的研究与实现 被引量:4

The Research and Implement of Network Public Opinion Monitoring System
下载PDF
导出
摘要 网络舆情作为一种重要的舆情形式,具有形成速度快,受众人群广等特点,对国家和社会的影响越来越重大。互联网用户可以自由地在微博、论坛、博客等中发表有关社会中各类现实问题的态度和意见。监测网络舆情的主要手段就是利用网络爬虫对目标网络的页面数据进行挖掘,然后对挖掘的数据进行分类处理,并科学地统计舆情信息。本文主要分析网络舆情的特征和处理对策,并利用网络爬虫、全文检索、关键词评分、以及科学数理统计等手段对网络舆情监测系统的原理进行探索与系统实现。 As an important form of network public opinion, fast generation, wide audience, network pubic opinion plays an increasingly key role in the nation and society. Intemet users can freely present their opinion in micro- blogs, forums, and blogs. The primary means of monitoring the network public opinion is the use of a Web crawler page of the target network, data mining, classification, and scientific statistical information of public opinion information. This paper mainly focused on the fea- tures of the network public opinion and treatment measures. Using Web crawler, text search, explore and system the Keywords rating, as well as scientific and mathematical statistics, it explored the principle of network public opinion system and realize the system.
作者 邓凯英 彭超
出处 《现代情报》 CSSCI 2013年第11期38-41,共4页 Journal of Modern Information
基金 教育部人文社科青年基金项目(项目编号:12YJCZH027 13YJCZH029)规划基金项目(项目编号:11YJAZH053) 中央高校基本科研业务费专项资金项目(西北民族大学 项目编号:31920130007)
关键词 网络舆情 爬虫 关键字排名 network public opinion spider keyword ranking
  • 相关文献

参考文献7

二级参考文献29

共引文献171

同被引文献31

  • 1SentiWordNet [ EB/OL]. [ 2015 - 08 - 18 ]. http ://sentiwordnet. isti. cnr. it.
  • 2LIU B, HU M, CHENG J. Opinion observer: analyzing and com- paring opinions on the Web[ ED/OL]. [ 2015 -11 -16]. http:// ccc. inaoep, mx/ villasen/index_archivos/cursoTATII/Clasifica- cionOpiniones/.
  • 3Liu - OpinionObserver05. pdf. The Micro - WNOp Corpus [ EB/OL]. [ 2015 - 08 - 18 ]. http :// www - 3, unipv, it/wnop/.
  • 4BALAHUR A, MONTOYO A. Applying a culture dependent Emo- tion Triggers database for text valence and emotion classification [ J]. Procesamiento del lenguaje natural, 2008, 40 : 107 - 114.
  • 5DAVE K, LAWRENCE S, PENNOCK D M. Mining the peanut gallery : opinion extraction and semantic classification of product re- views[ ED/OL]. [ 2015 - 11 - 16 ]. http://www, knshaldave. com/p451 - dave. pdf.
  • 6RILOFF E, WIEBE J, WILSON T. Learning subjective nouns u- sing extraction pattern bootstrapping[ ED/OL]. [ 2015 - 11 - 16 ]. http ://www. aclweb, org/anthology/W03 -0404.
  • 7LENHART A FOX SUSANNAH. Bloggers: a portrait of the Inter- net' s new storytellers [ J/OL ]. [ 2015 - 11 - 16 ]. http ://www. pewintemet, org/files/old - media/Files/Reports/2006/PIP% 2013loggers% 20Report% 20July% 2019% 202006. pdf. pdf.
  • 8CHAOVALIT P, ZHOU L. Movie reviews mining: a comparison between supervised and unsupervised classification approaches [ ED/OL ]. [ 2015 -11 -16 ]. http ://www. computer, org/csdl/ proceedings/hicss/2005/2268/04/22680112c, pdf.
  • 9KO M, KIM H W, YI M Y, et al. Movie commenter: aspect-based collaborative filtering by utilizing user comments [ ED/OL ]. 12015 11 - 16 ]. https://www, researehgate, net/publication/ 221391559_MovieCommenter_Aspeet - based_collaborative filte- ring_by_utilizing_user comments.
  • 10The Stanford Natural Language Processing Group E EB/OL]. [ 2015 - 08 - 16 ]. http ://nlp. stanford, edu/software/corenlp, sht- ml.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部