期刊文献+

基于渐近平稳过程的修正扩展卡尔曼滤波算法 被引量:1

An Improved Extend Kalman Filtering Algorithm Based on Asymptotic Stationary Process
下载PDF
导出
摘要 多目标跟踪中由于RCS闪烁和杂波变化造成的测量噪声波动,导致测量噪声并不是完全服从高斯分布。研究了基于渐近平稳过程的噪声模型,引入测量值置信度函数,提出了一种将测量值置信度反馈至滤波过程的方法,通过修正新息协方差阵及增益矩阵,降低测量噪声波动对滤波的影响。该方法增强了噪声压缩能力,有效地抑制了滤波的误差尖峰。最后,仿真结果验证了所提方法的有效性与可行性。 In multitarget trackingthe measurement noise is not an absolute Gaussian distribution because of clutter and the undulation of RCS.A model of noise was studied based on asymptotic stationary processand a confidence function was introduced.A method that could feed back the confidence degree of the measured value to the filtering process was proposed.By correcting the gain matrix and covariance matrixthe effect of measuring noise fluctuation on filtering was reduced.The method could enhance the ability of the noise compression and restrain the peak error.Simulation result verifies the validity and feasibility of the method.
出处 《电光与控制》 北大核心 2013年第11期105-108,113,共5页 Electronics Optics & Control
基金 航空基金(20112057005)
关键词 多目标跟踪 置信度函数 随机过程 扩展卡尔曼滤波 非线性系统 multi-target tracking confidence function stochastic process EKF nonlinear system
  • 相关文献

参考文献7

  • 1BAR-SHALOM Y. Multitarget-multisensor tracking:Appli- cations and advances [ M ]. 3rd ed. Boston : Artech House, 2000.
  • 2HUE C, LE CADRE J P. Tracking multiple objects with particle filtering [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 ( 3 ) :791-812.
  • 3WILLIAM F L, AARON D L. Unscented Kalman filters for multiple target tracking with symmetric measurement equa- tions[J]. IEEE Transations on Automatic Control, 2009, 54 (2) :370-375.
  • 4GIANNITRAPANI A, SCORTECCI F. Comparison of EKF and UKF for spacecraft localization via angle measurements [J]. IEEE Transations on Aerospace and Electronic Sys- tems, 2011, 40( 1 ) :75-84.
  • 5THOMAS E. Tracking wild maneuvers at low data-rate using curved track state parameters [ C]//IEEE Intenaational Ra- dar Conference, 2000:87-92.
  • 6HAYKIN S. Adaptive filter theory [ M ]. New York : Pearson Education, 2002.
  • 7GREWAL M S, ANDREWS A P. Kalman filtering theory and practice using Matlab[M]. 3rd ed. Wiley Insterscience, 2008.

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部