期刊文献+

非退化中心问题的构造性方法

On Constructive Methods in Nondegenerate Center Problems
下载PDF
导出
摘要 在中心焦点判定问题中,时间可逆性是一个非常有用的概念.给出了时间可逆系统的一个性质,利用此性质可以优化时间可逆条件推导的算法.对一类解析微分系统,给出了系统具有非退化中心的充要条件,利用此结论构造了三次微分系统的一些非平凡中心条件. Time-Reversibility is a very useful ty of time-reversible systems has been introd time-reversibility conditi tions ensuring the origin tions have been found fo ons. For a class of to be centered have r cubic systems. concept for the center-focus problem. In this paper, a proper- uced, which can be used to optimize the algorthm for deducing analytic differential systems, necessary and sufficient condi- been obtained. By the result, several non-trivial center condi-
作者 桑波
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第10期26-29,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金数学天元基金资助项目(11226041)
关键词 三次系统 中心焦点问题 时间可逆性 特征集 cubic systems center-focus problem time-reversibility characteristic-sets
  • 相关文献

参考文献12

  • 1WANG Dong-ming. Mechanical Manipulation for a Class of Differential Systems [J]. Journal of Symbolic Computation, 1991, 12(2): 233-254.
  • 2刘一戎,李继彬.论复自治微分系统的奇点量[J].中国科学(A辑),1989,20(3):245-255. 被引量:94
  • 3王铎,毛锐.计算Lyapunov量的复算法[J].自然科学进展(国家重点实验室通讯),1995,5(6):754-757. 被引量:6
  • 4WANG Duo. A Recursive Formula and Its Application To Computations of Normal Forms and Focal Values [C]//LIAO Shawtao, YE Yan-qian. Dynamical Systems. Singapore: World Sci Publ, 1993:238 -247.
  • 5YU Pei. Computation of Normal Forms Via a Perturbation Technique [J]. Journal of Sound and Vib, 1998, 211(1): 19-38.
  • 6ALGABA A, FREIRE E, GAMERO E. Isochronicity via Normal Form[J]. Qual Theory Dyn Syst, 2000, 1 (2): 133-156.
  • 7GARCIA I A, GRAU M. A Survey on the Inverse Integrating Factor [J]. Qual Theory Dyn Syst, 2010, 9 (1-2): 115-166.
  • 8LLOYD N G, PEARSON J M. Symmetry in Planar Dynamical Systems [J]. Journal of Symbolic Computation, 2002, 33(3): 357-366.
  • 9JIN Xiao-fan, WANG Dong-ming. On the Conditions of Kukles for the Existence of a Centre [J].Bulletin of London Mathematical Society, 1990, 22(1): 1-4.
  • 10桑波,朱思铭.焦点量算法与中心条件推导[J].数学物理学报(A辑),2008,28(1):164-173. 被引量:7

二级参考文献24

  • 1王铎,毛锐.计算Lyapunov量的复算法[J].自然科学进展(国家重点实验室通讯),1995,5(6):754-757. 被引量:6
  • 2黄文韬,刘一戎,唐清干.一类五次多项式系统的奇点量与极限环分支[J].数学物理学报(A辑),2005,25(5):744-752. 被引量:5
  • 3刘一戎,李继彬.论复自治微分系统的奇点量[J].中国科学(A辑),1989,20(3):245-255. 被引量:94
  • 4盛平兴.判别中心和焦点的充要条件[J].上海大学学报(自然科学版),1996,2(1):1-5. 被引量:3
  • 5LOUD W. Behavior of the Period of Solutions of Certain Plane Autonomous Systems Near Centers [J]. Contribution to Differential Equations, 1964, 3(1) : 21-36.
  • 6PLESHKAN I. A New Method of Investigating the Isochronicity of a System of Two Differential Equations [J]. Diff Equa, 1969, 5(4): 796-802.
  • 7CHRISTOPHER C, DEVLIN J. Isochronous Centers in Planar Polynomial Systems [J]. SIAM J Math Anal, 1997, 28(1): 162-177.
  • 8CHAVARRIGA J, GINE J, GARCIA I. Isochronous Centers of Cubic Systems with Degenerate Infinity [J]. Differential Equations and Dynamical Systems, 1997, 7(1): 49-66.
  • 9WEINIAN Z, XIAORONG H, ZHENBING Z. Weak Centers and Bifurcation of Critical Periods in Reversible Cubic Systems [J]. Computers and Mathematics with Applications, 2000, 40 (6 - 7) : 771 - 782.
  • 10CHAVARRIGA J, GRAU M. Some Open Problems Related to 16th Hilbert Problem [J]. Scientia(Series A: Mathemat- ical Sciences), 2003, 9(1) : 1-26.

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部