摘要
提出一种新的多分类最大间隔孪生支持向量机算法.该算法通过引入间隔以结构风险最小为优化目标建立分类模型,并采用一对一对余的结构训练子分类器.仿真实验和真实数据实验表明:所提算法能有效提高模型的泛化性能.
A novel maximum margin twin support vector machine for multi-class classification (K-MTS- VM) has been presented in this paper. The K MTSVM takes structural risk minimization principle as the optimization objective to build classification model by introducing the margin and uses a 1-versus 1 versus- rest structure to train sub-classifiers. The experimental results on both artificial and UCI datasets indicate that our K-MTSVM gets better generalization performance.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第10期130-135,共6页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(61273020
11001227)
中央高校基本科研业务费专项资金资助(XDJK2010B005)
关键词
多分类
孪生支持向量机
最大间隔
一对一对余
结构风险最小化原则
multi-class classification twin support vector machines~ maximum margin~ 1-versus 1 versus- rest~ structural risk minimization principle