期刊文献+

具有遗憾值约束的鲁棒性交通网络设计模型研究 被引量:4

Robust Transportation Network Design Modeling with Regret Value
下载PDF
导出
摘要 由于交通网络设计决策的长期性,许多参数会随时间而变化,因此在鲁棒性交通网络设计问题中考虑不确定性因素至关重要.当OD需求不确定时,同时考虑期望行程时间和最大遗憾值,引入一种新的鲁棒性度量标准,将α-鲁棒解的概念应用到交通网络设计问题中,提出了一种具有遗憾值约束的鲁棒性交通网络设计模型.然后设计遗传算法求解模型,得出不同遗憾值下网络设计的最佳方案.最后,以Nguyen-Dupius网络作为算例证明了遗传算法求解鲁棒性问题的有效性.详细分析了期望行程时间与最大遗憾值之间的权衡关系,权衡曲线表明,最大遗憾值的降低并不一定导致期望行程时间的较大增加;并将鲁棒优化模型与随机优化模型作比较,结果表明,鲁棒优化模型比随机优化模型更能规避不确定性带来的风险. Based on long-term transportation network design decisions and potential parameter variations, it is important that demand uncertainty is considered in transportation modeling. In this paper, we present a novel robustness measure that combines the two objectives by minimizing the expected travel time while bounding the relative regret in each scenario facing uncertain origin-destination demand (OD demand). The concept of α-robust solution is introduced into the transportation network design problem. We propose a robust transportation network design model with regret value constraints, then design an algorithm based on the genetic algorithm to solve the problem and obtain the optimal solutions for different regret values. Finally, numerical results based on the Nguyen-Dupuis network validate the effectiveness of the algorithm. While detailed analysis on trade-offs, between the expected travel time and the maximum regret value, shows that large reductions in maximum regret do not necessarily result in a great increase in expected travel time. Meanwhile, we compared the robust model presented with the stochastic model and numerical examples demonstrate that the robust planning network is more reliable and less risky than the stochastic model if demand uncertainty is considered in modeling.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2013年第5期86-92,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金资助项目(70871044 71172093) 教育部人文社会科学研究青年基金项目(10YJC630331)
关键词 系统工程 交通网络设计 遗传算法 鲁棒优化 遗憾值 system engineering traffic network design genetic algorithm robust optimization regret value
  • 相关文献

参考文献21

  • 1Unnikrishnan A,Lin D Y.User equilibrium with recomse:continuous network design problem[J].Computer-Aided Civil and Infrastructure Engineering,2012,27(7):512-524.
  • 2Chiou S.Bilevel programming for the continuous transport network design problem[J].Transportation Research,2005,39(4):362-383.
  • 3Davis G A.Exact local solution of the continuous network design problem via stochastic user equilibrium assignment[J].Transportation Research,1994,28 (1):61-75.
  • 4Farvaresh H,Sepehri M.A single-level mixed integer linear formulation for a bi-level discrete network design problem[J].Transportation Research Part E:Logistics and Transportation Review,2011,47 (5):623-640.
  • 5Xu T Z,Wei H,Hu G H.Study on continuous network design problem using simulated annealing and genetic algorithm[J].Expert Systems with Applications,2009,36(2):1322-1328.
  • 6Ukkusuri S V,Mathew T V,Waller S T.Robust transportation network design under demand uncertainty[J].Computer-Aided Civil and Infrastructure Engineering,2007,22(1):6-18.
  • 7Ukkusuri S V,Patil P.Multi-period transportation network design under demand uncertainty[J].Transportation Research Part B:Methodological,2009,43 (6):625-642.
  • 8Chen A,Kim J Y,Lee S,et al.Stochastic multiobjective models for network design problem[J].Expert Systems with Applications,2010,37 (2):1608-1619.
  • 9Sharmal S,Ukkusuri S V,Mathew T V.Pareto optimalmulti-objective optimization for robust transportation network design problem[J].Transportation Research Record:Journal of the Transportation Research Board,2009,2090:95-104.
  • 10Dimitriou L,Stathopoulos A.Reliable stochastic design of road network systems[J].International Journal of Industrial and Systems Engineering,2008,3 (5):549-574.

二级参考文献32

  • 1CHEN A, SUBPRASOM K, CHOOTINAN P. Assessing Financial Feasibility of a Build-operate-transfer Project under Uncertain Demand [ J ]. Transportation Research Record, 2001, 1771 : 124 - 131.
  • 2CHEN A, SUBPRASOM K, JI Zhaowang. Mean- variance Model for the Build-operate-transfer Scheme under Demand Uncertainty [ J ]. Transportation Research Record, 2003, 1857 : 93 - 101.
  • 3CHEN A, SUBPRASOM K, JI Zhaowang. A Simulationbased Multi-objective Genetic Algorithm (SMOGA) Procedure for BOT Network Design Problem [ J ]. Optimization and Engineering, 2006, 7 (8) : 93 -101.
  • 4CHEN A, SUBPRASOM K. Analysis of Regulation and Policy of Private Toll Roads in a Build-operate-transfer Scheme under Demand Uncertainty [ J ]. Transportation Research A, 2007, 41 (6) : 537 -558.
  • 5HOLLAND J H. Adaptation in Natural and Artificial Systems [ M ]. Ann Arbor: The University of Michigan Press, 1975.
  • 6陆化普.交通规划理论与方法[M].第二版.北京,清华大学出版社,2007.
  • 7Boyce D E. Urban transportation network equilibrium and design models: recent achievements and future prospective[ J]. Environment and Planning A, 1984, 16(11): 1445 -1474.
  • 8Yang H, Bell M G H. Models and algorithms for road network design: a review and some new development [ J]. Transportation Review, 1998, 18 (3) : 257 - 278.
  • 9Meng Q, Yang H, Bell M G H. An equivalent contin- uously differentiable model and a locally convergent al- gorithm for the continuous network design problem [ J ]. Transportation Research Part B, 2001 , 35 ( 1 ) : 83 -105.
  • 10Chiou S W. Bi-level programming for the continuous transport network design problem [ J ]. Transportation Research Part B, 2005, 39(4): 362-383.

共引文献25

同被引文献25

  • 1种鹏云.危险品道路运输网络拓扑特性及优化策略研究[C]//2013全国博士生交通运输工程学术论坛,2013.
  • 2D S Callaway, M E J Newman, S H Strogatz, et al. Network robustness and fragility: Percolation on random graphs[J]. Physical Review Letters, 2000, 85: 5468- 5471.
  • 3Jianxi Gao, S V Buldyrev, S Havlin, et al. Robustness of a network of networks[J]. Physical Review Letters, 2011, 107:195701.
  • 4Moreno Y, G6mez J B, Pacheco A F. Instability of scale-free networks under node-breaking avalanches[J].Europhysics Letters, 2002, 58(4): 630.
  • 5Wang Wenxu, Chen Guanrong. Universal robustness characteristic of weighted networks against cascading failure[J]. Physical Review E, 2008, 77(2): 026101.
  • 6Harry Kesten. What is percolation?[J]. Notices AMS, 2006, 53(5):572-573.
  • 7Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks [J]. Nature, 2000, 406: 378-382.
  • 8莫辉辉,王姣娥,金凤君.交通运输网络的复杂性研究[J].地理科学进展,2008,27(6):112-120. 被引量:73
  • 9张丽丽,李建宇,李兴斯.极大值函数的一类光滑逼近函数的性质研究[J].数学的实践与认识,2008,38(24):229-234. 被引量:6
  • 10郗恩崇,习江鹏,王玉辉.道路危险货物运输突发事件的应急保障与关键技术研究[J].交通运输系统工程与信息,2009,9(5):17-22. 被引量:4

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部