摘要
为了使滚动轴承故障的诊断效果更好,提出基于振动信号的滚动轴承多源多方法融合诊断技术。在融合方法中考虑小波分析、时延相关解调法和希尔伯特-黄变换(HHT)3种方法,采用3个传感器测试轴承座加速度,得到多源振动数据。利用3种方法得到的滚动轴承故障特征值,研究了9种融合方案,并利用支持向量机(SVM)进行了特征融合,讨论了不同方法和数据融合的诊断效果。经过实验验证和融合方案比较,表明了融合诊断方法的可行性和有效性。
In order to make better about ball bearing fault diagnosis,multiple sources and multiple methods about integration of diagnostic techniques are proposed based on ball bearing of vibration signal considering three kind of methods,including the wavelet analysis,the delayed correlation-envelope technique and Hilbert-Huang Transform(HHT),which uses three acceleration sensors test bearing seat acceleration to get multiple sources of vibration data.Using three methods to get feature values of the ball bearing fault ??and studying the nine kinds of integration programs,the different methods and data fusion diagnosis are discussed with support vector machine(SVM)for a feature fusion.Then through experimental verification and comparison of integration plans,the feasibility of the integration and effectiveness of diagnostic methods are shown.
出处
《振动.测试与诊断》
EI
CSCD
北大核心
2013年第5期868-874,916,共7页
Journal of Vibration,Measurement & Diagnosis
基金
国家自然科学基金资助项目(61179057)
关键词
滚动轴承
小波分析
时延相关解调法
希尔伯特-黄变换
支持向量机
ball bearings
wavelet analysis
delayed correlation-envelope technique
Hilbert-Huang transform(HHT)
support vector machine(SVM