期刊文献+

渐进均匀化方法在复合地基复合模量计算中的应用 被引量:4

The Application of Asymptotic Homogenization Method in Calculating Composite Modulus of Composite Foundation
下载PDF
导出
摘要 复合模量是计算复合地基沉降的关键指标之一,目前主要采用面积加权公式计算,实践证明该方法的计算值与实测值有较大误差.渐进均匀化方法(AHM)是一种求解周期性复合材料等效弹性模量的方法.将渐近均匀化方法应用于复合地基的等效模量分析,得到的等效弹性模量与试验数据进行比较,验证了该方法计算复合模量的可行性.在此基础上,做了复合模量影响因素的正交试验分析,结论是影响复合模量的主要因素是置换率. Composite modulus is one of the key indicators while calculate the settlement of composite foundation. It is mainly calculated by the area weighted formula at present. And the practice proves that the value calculated by this method has bigger error comparing with the measured values. Asymptotic homoge- nization method (AHM) is a kind of method solving equivalent elastic matrix of periodic composite material. Comparing the measured data with the equivalent elastic matrix, which is the analysis of the equivalent mod- ulus of composite foundation that applied by AHM. The result of comparison shows it's feasibility of calcu- lating the composite modulus. Orthogonal test analyses have been done, on this basis, which is the most in- fluential factor of composite modulus. It has been proved that the main factor affects composite modulus is replacement rate.
出处 《湘潭大学自然科学学报》 CAS 北大核心 2013年第3期45-48,共4页 Natural Science Journal of Xiangtan University
基金 湖南省教育厅资助科研项目(10C1286) 湖南省科技厅一般项目(2010CK3035)
关键词 复合地基 渐进均匀化方法 等效弹性模量 正交试验 composite foundation asymptotic homogenization method equivalent elastic modulus or-thogonal test
  • 相关文献

参考文献12

  • 1BENSOUSSAN A,PAPANICOLAOU G. Asymptotic analysis for periodic structures[M]. AmesterdamtNorth Holland,1978.
  • 2SANCHEZ-PALENCIA E. Non-homogenous media and vibration theory[M]. Lect Notes Phys,1980.
  • 3HASSANI B,HINTON E. A review of homogenization and topology optimization II-analytical and numerical solution of homogeni- zation equatlons[J]. Computers and Structures, 1998:719--38.
  • 4BENDSOE M P. Optimal shape design as a material distribution problem[M]. Struet Optim,1989.
  • 5KOHN R V,STRANG G. Optimal design and relaxation of variational problems-I[J]. Communications on Pure and Applied Math- ematics, 1986, 39(1):113--137.
  • 6KOHN R V, STRANG G. Optimal design and relaxation of variational problems-lll[J]. Communications on Pure and Applied Mathematies, 1986, 39(3) :353--337.
  • 7KOHN R V, 5TRANG G. Optimal design and relaxation of variational problems-II[J]. Communications on Pure and Applied Mathematics, 1986, 39(2) : 139-- 182.
  • 8BONNETIER E,VOGELIUS M. Relaxation of a compliance functional for a plate optimization problem[R]. Technical Report, U- niversity of Maryland, 1986.
  • 9HASSANI B, HINTON E. A review of homogenization and topology optimization I-homogenlzation theory for media with periodic structure[J]. Computers and Structures, 1998: 707--717.
  • 10JOSE M G, NOBORU K. Preproeessing and postprocessing for materials based on the homogenization method with adaptive finite element methods[J]. Comp Meth Appl Mech Eng, 1990,83:143--198.

二级参考文献2

  • 1.JGJ 79--2002,J 220—2002.建筑地基处理技术规范[S].,..
  • 2廖玉膦.概率论与数理统计[M].上海:复旦大学出版社,1994.322-336.

共引文献9

同被引文献17

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部