期刊文献+

水热法制备准球形掺Ti^(4+)-LiFePO_4/C纳米粉体及温度对其电化学性能的影响 被引量:1

Hydrothermal Synthesis of Quasi-spherical Nanostructured Doped Ti^(4+)-LiFePO_4/C Powder and Its Temperature-dependent Electrochemical Properties
下载PDF
导出
摘要 以(NH4)2FeSO4、LiOH、Ti(SO4)2以及H3PO4为原料一步水热合成法制备不同温度下掺Ti4+-LiFePO4,然后进行碳包覆。XRD和SEM表明,制备的样品为单一相的准球形纳米粉体;激光粒度分析表明,在160℃下合成的粉体平均粒径最小,约为140 nm;恒电流充放电及电化学阻抗谱测试材料电化学性能表明,在160℃下合成的掺Ti4+-LiFePO4/C材料充放电性能最好,0.1 C倍率下首次放电容量为160.97 mA·h/g,0.5 C倍率下经过50次放电,容量保留率为95.28%,通过电化学阻抗计算出锂离子扩散系数为1.78×10-12cm2/s。 Doped Ti4+-LiFePO4/C was synthesized by one-step hydrothermal method at different temperatures using (NH4 )2 FeSO4, LiOH, Ti (SO4 )2 and H3 PO4 as raw materials. Then, the product was modified with carbon coating. X-ray diffraction patterns and scanning microscopy images along with energy dispersive spectroscopy mappings have verified the tom electron homogeneous existence of coated carbon and doped Ti4+ in LiFePO4 particles with phospho-olivine structure and an average size of 140 nm at 160 ℃. The electrochemical performance of the material has been studied through galvanostatic charge-discharge measurements and electrochemical impedance spectroscopy. The material shows the best electrochemical performance at 160 ℃,with the initial discharge capacity of 160. 97 mA . h/g at 0. 1 C, a capacity retention of 95.28% after 50 cycles at 0.5 C and an increased lithium ion diffusion coefficient of 1.78 x 10-12 cmZ/s.
出处 《精细化工》 EI CAS CSCD 北大核心 2013年第11期1208-1212,1216,共6页 Fine Chemicals
关键词 水热合成法 磷酸铁锂 纳米材料 锂离子扩散系数 功能材料 hydrothermal synthesis lithium iron phosphate nanostructured lithium ion diffusioncoefficient functional materials
  • 相关文献

参考文献4

二级参考文献34

  • 1熊利芝,梁凯,何则强.锂离子在LiVOPO_4中的扩散系数的测定[J].吉首大学学报(自然科学版),2011,32(1):85-87. 被引量:3
  • 2施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005,17(4):604-613. 被引量:66
  • 3熊利芝,梁凯,侯慧,何则强,Li-zhi Ze-qiang.LiVOPO_4/C的溶液沉积-热解法制备与表征[J].吉首大学学报(自然科学版),2010,31(6):86-89. 被引量:2
  • 4唐致远,阳晓霞,陈玉红,李昌盛,焦延峰,贺艳兵.Mg^(2+)、Zr^(4+)离子掺杂对Li_4Ti_5O_(12)电化学性能的影响[J].精细化工,2007,24(3):273-277. 被引量:12
  • 5Dokko K, Sugaya J, Nakano H,et al. Sol-gel fabrication of lithium- ion microarray battery [ J ]. Electrochem Commun, 2007,9 : 857 - 862.
  • 6Hardwick L J, Holzapfel M, Novak P, et al. Electrochemical lithium insertion into anatase-type TiO2: an in situ Raman microscopy investigation[ J ]. Electrochim Acta,2007 ,52 :5357 - 5367.
  • 7Subramanian V, Karki A, Gnanasekar K I, et al. Nanocrystalline TiO2 (anatase) for Li-ion batteries [ J ]. J Power Sources, 2006, 159 : 186 - 192.
  • 8Alien G C, Paul M. Chemical characterization of transition metal spinel-type oxides by infrared spectroscopy [ J ]. Appli Spect, 1995, 49:451 - 458.
  • 9Ho C, Raistrick I D, Huggins R A. Application of A - C techniques to the study of lithium diffusion in tungsten trioxide thin films [ J ]. J Electrochem Soc, 1980,127:343 - 350.
  • 10Funabiki A,lnaba M,Ogumi Z,et al. Impedance study on the electrochemical lithium intercalation into natural graphite powder [ J ]. J Electrochem Soc, 1998,145 : 172 - 178.

共引文献17

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部