期刊文献+

锰掺杂诱导正交相SnO_2的生长行为

Growth Behavior of Orthorhombic SnO_2 Induced by Mn-Doped SnO_2
下载PDF
导出
摘要 通过一种简单的共沉淀方法制备了Mn掺杂二氧化锡(SnO_2)颗粒,对前驱体在不同温度下热处理,并通过X射线衍射(X-my diffraction,XRD)和高分辨电子显微学(high-resolution transmission electron microscopy,HRTEM)对样品的微纳米结构进行了表征.结果表明:样品中除了四方相Sn02外,还存在正交相SnO_2.XRD测试结果显示,随着退火温度的增加,正交相SnO_2的峰强减弱,四方相的峰强增加.HRTEM分析表明:样品中可以同时找到四方相和正交相SnO_2的晶格像,进一步证实了正交相SnO_2的存在.Mn掺杂SnO_2后,Mn离子进入SnO_2晶胞,替代了Sn离子,因此引起晶格扭曲畸变,对正交相SnO_2的形成起着重要的作用. Tin dioxide (SnO2) is an n-type semiconductor material with tetragonal rutile crystal structure under normal conditions and displays many interesting physical and chemical properties. Another form of SnO2 with an orthorhombic crystal structure is known to be stable only at high pressures and temperatures. However, there are limited reports on effects of Mn-doped tetragonal phase SnO2 on micro/nanostructured characteristics. In this article, micro/nanostructures of Mn-doped tetragonal phase SnO2 have been successfully prepared with a chemical co-precipitation method. The micro/nanostructural evolution of Mn-doped tetragonal phase SnO2 under different heat treatment temperatures is evaluated with X-ray diffraction (XRD) and a high-resolution transmission electron microscopy (HRTEM). It is surprisingly found that the orthorhombic phase SnO2 is formed in Mn-doped tetragonal phase SnO2 . The obvious diffraction peaks and clear lattice fringes confirm that the orthorhombic phase SnO2 nanocrystals evidently exist in Mn-doped SnO2 samples. Experimental results indicate that the XRD peak intensities and crystal planes of the orthorhombic phase SnO2 decrease with increasing of heat treatment temperatures. Formation of orthorhombic phase SnO2 is attributed to the lattice distortion of tetragonal phase SnO2 due to the Mn-doped tetragonal phase SnO2.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期459-464,共6页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(11074161) 上海市科委基金资助项目(10JC1405400) 上海市重点学科建设资助项目(S30109)
关键词 二氧化锡(SnO2) 四方相 正交相 晶格畸变 微纳米结构 tin dioxide (SnO2) tetragonal orthorhombic lattice distortion micro-nanostructure
  • 相关文献

参考文献31

  • 1YUSTA F J, HITCHMAN M L, SHAMLIAN S H. CVD preparation and characterization of tin dioxide films for electrochemical applications [J]. J Mater Chem, 1997, 7(8): 1421-1427.
  • 2WANG J, DU J, CHEN C, et al. Electron-beam ir- radiation strategies for growth behavior of tin diox- ide nanocrystals [J]. J Phys Chem C, 2011, 115(42): 20523-20528.
  • 3HUANG H, LIM C K, TSE M S, et al. SnO2 nanorod arrays: low temperature growth, surface modification and field emission properties [J]. Nanoscale, 2012, 4(5): 1491-1496.
  • 4ZHOU X M, FU W Y, YANG H B, et al. Novel SnO2 hierarchical nanostructures: synthesis and their gas sensing properties [J]. Mater Lett, 2012, 90: 53-55.
  • 5HOSSAIN M A, JENNINGS J R, KOH Z Y, et al. Car- rier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocur- rent densities [J]. ACS Nano, 2011, 5(4): 3172-3181.
  • 6CHAPPEL S, CHEN S G, ZABAN n. TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells [J]. Langmuir, 2002, 18(8): 3336-3342.
  • 7RENARD L, BABOT O, SAADAOUI H, et M. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors [J]. Nanoscale,2012, 4(21): 6806-6813.
  • 8KOLMAKOV A, KLENOV D O, LILACH Y, et al. En- hanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pdcatalyst particles [J]. Nano Lett, 2005, 5(4): 667-673.
  • 9Du Z F, YIN X M, ZHANG M, et al. In situ synthesis of SnO2/graphene nanocomposite and their applica- tion as anode material for lithium ion battery [J]. Mater Lett, 2010, 64(19): 2076-2079.
  • 10WANG X Y, ZHOU X F, YAO K, et al. A SnO2/graphene composite as a high stability elec- trode for lithium ion batteries [J]. Carbon, 2011, 49(1): 133-139.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部