期刊文献+

GM-ARIMA模型在大坝安全监测中的应用 被引量:4

Application of GM-ARIMA Model to Dam Safety Monitoring
下载PDF
导出
摘要 针对大坝安全监测的小样本数据既有一定趋势性又有一定波动性的特点,把灰色模型和时间序列模型结合起来运用在大坝安全监测中.首先利用灰色模型进行拟合和预测,然后对灰色残差序列建立ARIMA模型,对残差进行预测,最后将两者结合起来即可得到预测值.本文以小湾拱坝坝顶某测点的径向位移为例,建立GM-ARIMA进行拟合和预测,并与实测值比较.计算结果表明,与GM模型相比,GM-ARIMA模型的精度高,预测值更接近于实测值. In view of that the dam safety monitoring data sets have a certain characteristic of tendency and vol- atility, the grey model and the time series model are combined to use in dam safety monitoring. Firstly, the gray model is used to fit and forecast; and then ARIMA model is built for grey residuals to predict the residu- als; the final combination of two models can be used to predict values. Taking the radial displacements of Xi- aowan arch dam for example, the GM-ARIMA model is established to fit and predict, and then compare with the measured values. The results show that, compared with the traditional GM model, GM-ARIMA model is more accuracy and predictive values are closer to the measured values.
出处 《三峡大学学报(自然科学版)》 CAS 2013年第5期6-9,共4页 Journal of China Three Gorges University:Natural Sciences
基金 国家自然科学基金资助项目(51139001) 新世纪优秀人才支持计划资助(NCET-11-0628) 高等学校博士学科点专项科研基金(20120094110005) 中央高校基本科研业务费项目(2012B07214)
关键词 GM—ARIMA模型 大坝安全监测 拟合 预测 GM ARIMA model dam safety monitoring fitting prediction
  • 相关文献

参考文献4

二级参考文献21

  • 1陆有忠,杨有贞,张会林.边坡工程可靠性的支持向量机估计[J].岩石力学与工程学报,2005,24(1):149-153. 被引量:24
  • 2苏怀智,吴中如,戴会超.初探大坝安全智能融合监控体系[J].水力发电学报,2005,24(1):122-126. 被引量:51
  • 3雷鹏,顾冲时.基于粗集推理的大坝安全监测预报模型研究[J].河海大学学报(自然科学版),2005,33(4):391-394. 被引量:4
  • 4杨永国.灰色时序组合模型及其在矿井涌水量预测中的应用[J].水文地质工程地质,1996,23(6):36-38. 被引量:11
  • 5Wu Zhongru,Su Huaizhi. Dam health diagnosis and evaluation [ J ]. Smart Materials & Structures, 2005,14 ( 3 ) : 130-136
  • 6Vapnik V N. The nature of statistical learning theory[ M ]. New York: Springer-Verlag, 1995.
  • 7Pawlak Zdzislaw, Skowron Andrzej. Rudiments of rough sets [ J ]. Information Sciences ,2007,177 (1) :3-27.
  • 8Renaud J, Thibault J, Lanouette R, et all. Comparison of two multicriteria decision aid methods: Net flow and rough set methods in a high yield pulping process[ J ]. European Journal of Operational Research,2007,177 (3) :1418-1432
  • 9Katagiri Shinya, Abe Shigeo. Incremental training of support vector machines using hyperspheres [ J ]. Pattern Recognition Letters,2006,27 ( 13 ) : 1495-1507
  • 10Trafalis T B, Gilbert R C. Robust support vector machines for classification and computational issues [ J ]. Optimization Methods and Software,2007,22( 1 ) :187-198

共引文献95

同被引文献24

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部