期刊文献+

ERK1/2信号通路的活化参与人脐静脉内皮细胞向间充质转分化的过程 被引量:1

ERK1/2 Signaling Pathway Is Involved in Endothelial-to-mesenchymal Transition in the Human Umbilical Vein Endothelial Cells
下载PDF
导出
摘要 目的建立人脐静脉内皮细胞(HUVECs)向间充质转分化的模型并探讨其可能的信号转导途径。方法以HUVECs为研究对象,分组如下:对照组、转化生长因子-β1(TGF-β1)模型组、TGF-β1+DMSO组以及TGF-β1+抑制剂干预组。TGF-β1模型组应用5ng/mL TGF-β1刺激HUVECs 72h;TGF-β1+DMSO组应用5ng/mL TGF-β1及1μL/mL DMSO刺激HUVECs 72h;TGF-β1+抑制剂干预组分别应用p38MAPK抑制剂SB203580(5mmol/L)或ERK抑制剂U0126(10mmol/L)或JNK抑制剂SP600125(5mmol/L)干预TGF-β1诱导的内皮细胞,倒置显微镜观察内皮细胞形态,应用免疫荧光法检测VE-钙粘蛋白(VE-cadherin)和α-肌动蛋白(α-SMA)在细胞内的分布情况;并应用Western blot法检测VE-cadherin和α-SMA的蛋白表达情况。结果 TGF-β1(5ng/mL)刺激HUVECs 72h后,内皮细胞形态由卵圆形铺路石状向梭形转变,与0h相比,VE-cadherin蛋白表达显著下调(P<0.05),α-SMA蛋白表达显著上调(P<0.05)。抑制ERK1/2信号转导通路,可维持HUVECs内皮细胞表型以及VE-cadherin在内皮细胞的表达,抑制α-SMA蛋白表达,与TGF-β1模型组相比,差异具有统计学意义(P<0.05);抑制p38MAPK和JNK通路,与TGF-β1模型组相比,HUVECs表型、VE-cadherin和α-SMA蛋白表达未见明显差异。结论 TGF-β1可诱导内皮细胞向间充质转分化,应用U0126抑制ERK1/2信号途径可抑制内皮细胞转分化的进展,提示ERK1/2的活化可能是该过程重要的信号转导途径。 Objective To establish a human umbilical vein endothelial cells (HUVECs) model of endothelial-to mesenchymal transition (EndoMT) and to explore the possible signal transduction pathways. Methods HUVECs were divided into four groups as follows : control group;TGF-βl group,in which the cells were stimulated with 5 ng/mL TGF-β1 for 72 h;TGF-β1 plus DMSO group,in which the cells were treated with 5 ng/mL TGF-β1 and 1 μL/mL DMSO for 72 h;TGF-β1 plus MAPK inhibitor groups,in which the cells were treated with 5 ng/mL TGF 111 and MAPK specific inhibitors (p38 MAPK inhibitor,5 mmol/ L SB203580 ;JNK inhibitor,5 mmol/L SP600125;or ERK1/2 inhibitor, 10 mmol/L U0126). The morphology of cells was observed under the inverted phase contrast microscope. The expression of VE-cadherin and a smooth muscle actin (α-SMA) was detected by Western blot and immunofluorescence staining. Results The morphology of HUVECs was transformed from cobblestone-like appearance to fibroblast-like one when they were treated with 5 ng/mL TGF-β1 for 72 h. The expression of VE-cadherin was significantly decreased and that of α-SMA significantly increased in TGF-β1 group compared with control group (P〈0.05). When the ERK1/2 signaling pathway was inhibited, HUVECs maintained the morphology of endothelial cells and the expression of VE-cadherin,while the expression of a-SMA was downregulated significantly (P〈0.05). There was a significant difference in the expression of VE-cadherin and α-SMA between TGF-β1 group and TGF-131 plus ERK1/2 inhibitor group (P〈0. 05). No significant difference was found in the morphology of cells and the expression of VE cadherin and α-SMA between TGF-β1, group and TGF-131 plus p38 MAPK or JNK inhibitor group (P〉0.05). Conclusion TGF-β1 can induce EndoMT in HUVECs and inhibiting ERK1/2 signaling pathway by U0126 can significantly attenuate the EndoMT, which suggest that ERK1/2 signaling pathway is involved in the EndoMT of HUVECs.
出处 《华中科技大学学报(医学版)》 CAS CSCD 北大核心 2013年第5期505-510,共6页 Acta Medicinae Universitatis Scientiae et Technologiae Huazhong
基金 国家自然科学基金(No.81100485 81170686 81270770 81270771) 教育部第43批留学回国人员科研启动基金(教外司留[2011]1568号) 教育部重大项目[2011]313号(No.311028) 卫生部行业专项基金(No.201002010-3)资助项目
关键词 转化生长因子-β1 人脐静脉内皮细胞 内皮细胞向间充质转分化 胞外信号调节激酶 transforming growth factor-βl human umbilical vein endothelial cells endothelial-to mesenchymal transition extracellular regulated kinase
  • 相关文献

参考文献20

  • 1Grgic I, Duffield d S, Humphrcys B D. The origin of intersti tial myofibroblasts in chronic kidney disease [J]. Pediatric Nephrology,2011,27(2) :183 193.
  • 2Wiwanitkit V. Fibrosis and evidm:ce for epithelial-mesenchy- mal transition in the kidneys of patients with staghorn calculi [J]. BJU lnt,2011,108(8) :1aa6-1845.
  • 3Zeisberg E M, Potenta S E, Sugimoto H. et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenehymal transi tion [J]. J Am Soc Nephrol,2008,19(12) :2282 2287.
  • 4Li J, Qu X, Bertram J F. Endothelial-myofibroblast transition contributes to the early development of diabetic renal intersti tial fibrosis in streptozotocin-induced diabetic mice[J]. Am J Pathol,2009,175(4) :1380 1388.
  • 5Basile DP,Friedrich J L, Spahic J, et al. Impaired endothelial proliferation and mesenchymal transition contribute to vascu- lar rare faction following acute kidney injury[J] Am J Physi ol Renal Physiol,2011,300(3) :7:1-733.
  • 6L6pez-Novoa J M,Nieto M A. Inflammation and EMT:an al- liance towards organ fibrosis and cancer progression [J]. Mol Med, 2009,1 (6) : 303-314.
  • 7Medici D, Potenta S, Kalluri R. Transforming growth factor- :z promotes Snail mediated endothelial mesenchymal transi- tionthrough convergence of Sma&dependent and Smad-inde- pendentsignaling[J]. Biochem J, 2011,437 (3) : 515-520.
  • 8Chen Y,Leask A,Abraham D J,et al. Thrombospondin 1 is a key mediator of tranforming growth factor D-mediated cell contractility in systemic sclerosis via a mitogen activated protein kinase kinase(MEK)/extracellular signal- regulated kinase(ERK)-dependent mechanism[J]. Fibrogenesis Tissue Repair,2011,4(l) :9.
  • 9Wang W,Koka V, Lan H Y. Transforming growth factor-beta and Smad signalling in kidney diseases [J]. Nephrology (Carl- ton) ,2005,10(1) :48 56.
  • 10Eddy A A, Neilson E G. Chronic kidney disease progression [J] J Am Soc Nephrol,2006,17(11) :2964 2966.

二级参考文献44

  • 1Stenzinger A, Schreiner D, Koch P, et al. Cell and molecular biology of the novel protein tyrosine-phosphatase-interacting protein 51[J]. Int Rev Cell Mol Biol, 2009,275 : 183-246.
  • 2Yu C, Han W,Shi T,et al. PTPIP51,a novel 14-3-3 binding protein,regulates cell morphology and motility via Raf-ERK pathway[J]. Cell Signal,2008,20(12) :2208-2220.
  • 3McCubrey J A, Steelman L S, Chappell W H, et al Roles of the Raf/MEK/ERK pathway in cell growth,malignant transformation and drug resistance[J]. Bioehim Biophys Acta, 2007,1773(8) : 1263-1284.
  • 4Xiang X, Zang M, Waelde C A, et al. Phosphorylation of 338SSYy341 regulates specific interaction between Raf-1 and MEK1[J]. J Biol Chem,2002,277(47):44996-45003.
  • 5Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-^△△ct method[J]. Methods,2001,25(4) 1402-408.
  • 6Landis S H, Murray T, Bolden S, et al. Cancer statics, 1999 [J]. CA Cancer J C1in,1999,49(1) :8-31.
  • 7Stenzinger A,Kajosch T,Tag C, et al. The novel protein PT- PIP51 exhibits tissue- and cell-specific expression[J]. Histochem Cell Biol,2005,123(1):19-28.
  • 8Stenzinger A, Marker D, Koch P, et aI. Protein tyrosine phosphatase interacting protein 51 (PTPIP51) mRNA expression and localization and its in vitro interacting partner protein tyrosine phosphatase IB(PTPIB)in human placenta of the first,second, and third trimester[J]. Histochem Cytochem, 2009,57(2) : 143-153.
  • 9Dent P, Yacoub A, Fisher P B,et al. MAPK pathways in radiation responses[J]. Oncogene,2003,22(37) :5885-5896.
  • 10Tidyman W E,Rauen K A. The RASopathies:developmental syndromes of Ras/MAPK pathway dysregulation[J]. Curr Opin Genet Dev, 2009,19(3) : 230-236.

共引文献7

同被引文献14

  • 1Ashiru O,Boutct P,Fernandez-Messina L,et al.Natural killercell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA *008 that is shed by tumor cells in ex-osotnes[J].Cancer Res,2010,70(2):481-489.
  • 2Bennouna J,Bompas E,Neidhardt E M,et al.Phase-1 studyof Innacell gammadelta,an autologous cell-therapy producthighly enriched in gamma9delta2 T lymphocytes,in combina-tion with IL-2,in patients with metastatic renal cell carcinoma[J].Cancer Immunol Immunother,2008,57(11):1599-1609.
  • 3Marincola F M,Jaffee E M,Hicklin D J,et al.Escape of hu-man solid tumors from T-cell recognition:molecular mecha-nisms and functional significance[J].Immunol,2000,74(6):181-273.
  • 4Wu J D,Higgins L M,Steinle A,et al.Prevalent expression ofthe immunostimulatory MHC class I chain-related moleculeis counteracted by shedding in prostate cancer[J].J Clin In-vest,2004,114(4):560-568.
  • 5Armeanu S,Bitzer M,Lauer U M,et al.Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodiumvalproate[J],Cancer Res,2005,65(14):6321-6329.
  • 6Lim J H,Woo J S,Shin Y W.Cilostazol protects endothelialcells against lipopolysaccharide-induced apoptosis through ERK1/2-and P3B MAPK-dependent pathways[J].Korean JIntern Med,2009,24(2):113-122.
  • 7Wu X,Tao Y,Hou J,et al.Valproic acid upregulates NKG2 Dligand expression through an ERK-dependent mechanism andpotentially enhances NK cell-mediated lysis of myeloma[J].Neoplasia,2012,14(12);1178-1189.
  • 8Holtmeier W,Kabelitz D.Gammadelta T cells link innate andadaptive immune responses[J].Chem Immunol Allergy,2005,86(11):151-183.
  • 9Glaser K B,Staver M J,Waring J F,et al.Gene expressionprofiling of multiple histone deacetylase(HDAC)inhibitors:defining a common gene set produced by HDAC inhibition inT24 and MDA carcinoma cell lines[J].Mol Cancer Ther,2003,2(2):151-163.
  • 10Groh V,Wu J,Yee C,et al.Tumour-derived soluble MIC lig-ands impair expression of NKG2D and T-cell activation[J].Nature,2002,419(6908):734-738.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部