期刊文献+

Light-controlled synthesis of uniform platinum nano- dendrites with markedly enhanced electrocatalytic activity 被引量:7

Light-controlled synthesis of uniform platinum nano- dendrites with markedly enhanced electrocatalytic activity
原文传递
导出
摘要 我们报导一在基于锌(II ) 播种途径的 situ 快在白轻照耀下面的卟啉(ZnP ) ,与悦耳的尺寸导致一致的球形的铂 nanodendrites。铂 nanodendrites 展览显著地与商业铂黑色相比向氧减小反应(ORR ) 和甲醇氧化反应(粗腐殖质) 改进了 electrocatalytic 活动。 We report a fast in situ seeding approach based on zinc(II) porphyrin (ZnP) under white light irradiation, leading to uniform spherical platinum nanodendrites with tunable sizes. The platinum nanodendrites exhibit significantly improved electrocatalytic activities toward oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) compared with commercial platinum black.
出处 《Nano Research》 SCIE EI CAS CSCD 2013年第10期720-725,共6页 纳米研究(英文版)
基金 Acknowledgements This work was partially supported by the National Basic Research Program (973 Program) of China (No. 2012CB215500), the National High-tech R&D Program(863 Program) of China (No. 2011AA11A273), and the National Natural Science Foundation of China (NSFC, Nos. 21003114 and 21103163). The authors thank Professor John A. Shelnutt at Georgia University, USA for fruitful discussions.
关键词 电催化活性 铂黑 纳米枝晶 合成 光控 氧还原反应 播种方法 氧化反应 platinum nanodendrites,zinc(II) porphyrin,oxygen reduction reaction,methanol oxidation reaction
  • 相关文献

参考文献25

  • 1Wu, H.; Chan. G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B.; et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012. 7, 309-314.
  • 2Merlet, C.; Rotenberg, B.; Madden, P. A.; Tabema, P. L.; Simon, P.; Gogotsi, Y.; Salanne, M. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat.Mater. 2012,11, 306-310.
  • 3Lubner, C. E.; Applegate, A. M.; Knorzer, P.; Ganago, A.; Bryant. D. A.; Happe, T.; Golbeck, J. H. Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc. Natl. Acad Sci. USA 2011,108, 20988-20991.
  • 4Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011,332,443-447.
  • 5Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010,110, 527-546.
  • 6Somorjai, G. A.; Park, J. Y. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem. Soc. Rev. 2008, 37, 2155-2162.
  • 7Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669-3712.
  • 8Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880—4910.
  • 9Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science2009, 324, 1302-1305.
  • 10Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; Alivisatos, A. P. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 2007, 7, 2951-2959.

同被引文献29

  • 1Bond G C, Thompson D T. Catalysis by gold[J]. Catalysis Reviews-Science and Engineering, 1999, 41(3/4): 319-388.
  • 2Haruta M. Catalysis - gold rush[J]. Nature, 2005, 437(7062): 1098-1099.
  • 3Yongprapat S, Therdthianwong A, Therdthianwong S. Au/C catalyst prepared by polyvinyl alcohol protection method for direct alcohol alkaline exchange membrane fuel cell application[J]. Journal of Applied Electrochemistry, 2012, 42(7): 483-490.
  • 4Rao C V, Cabrera C R, Ishikawa Y. Graphene-supported Pt-Au alloy nanoparticles: A highly efficient anode for direct formic acid fuel cells[J]. The Journal of Physical Chemistry C, 2011, 115(44): 21963-21970.
  • 5Kwon Y, Schouten K J P, Koper M T M. Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes[J]. ChemCatChem, 2011, 3(7): 1176-1185.
  • 6Gong J L, Flaherty D W, Yan T, et al. Selective oxidation of propanol on Au(111): Mechanistic insights into aerobic oxidation of alcohols[J]. ChemPhysChem, 2008, 9(17): 2461-2466.
  • 7Lin J N, Wan B Z. Effects of preparation conditions on gold/Y-type zeolite for CO oxidation[J]. Applied Catalysis B: Environmental, 2003, 41(1/2): 83-95.
  • 8Carabineiro S A C, Martins L M D R S, Avalos-Borja M, et al. Gold nanoparticles supported On carbon materials for cyclohexane oxidation with hydrogen peroxide[J]. Applied Catalysis A: General, 2013, 467: 279-290.
  • 9Yan S H, Gao L Z, Zhang S C, et al. Synthesis of Au/C catalyst with high electrooxidation activity[J]. Electrochimica Acta, 2013, 94: 159-164.
  • 10Avramovivic M L, Leger J M, Lamy C, et al. The electrooxidation of glycerol on the gold(100)-oriented single-crystal surface and polycrystalline surface in 0.1 M NaOH[J]. Journal of Electroanalytical Chemistry, 1991, 308(1/2): 309-317.

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部