期刊文献+

利用主成分分析的模态参数识别 被引量:8

Modal Parameter Identification with Principal Component Analysis
下载PDF
导出
摘要 针对运行模态分析和独立成分分析技术不完善、可能会识别出虚假模态等缺点,提出一种新的利用主成分分析进行模态参数识别的方法。基本思想是找出模态振型与线性混叠矩阵之间及各阶模态响应与主成分之间的对应关系,并将模态参数识别问题转化为结构响应数据的主成分分解问题。不同状态下梁的仿真结果表明,仅以系统结构的时域响应数据为对象,利用含观测噪声基于主元抽取的主成分分析算法,就可以识别响应中占主要贡献的各阶模态振型和固有频率,且适用于不同边界条件、载荷类型及加载位置,对高斯测量噪声也不敏感,可应用于独立模态控制方法中被控系统的辨识与建模、最优控制点选择、作动器安装位置和控制频率确定以及减振效果预估。 A novel modal parameter identification method based on principal component analysis is proposed to improve the operational modal analysis and the independent component analysis,and to decrease the possibility of identifying false modal.The essentiality is to find the relationship between modal shape and linear compound matrix and the relationship between modal responses and principal components.The modal parameter identification is then changed into principal component decomposition.Numerical simulations of two beams with different state show that the new principal component extraction based method is insensitive to Gauss measurement noise,and enables to identify dominant modal shapes and natural frequencies only using vibration time-domain response signals of a structure with measurement noise in despite of system boundary,load type,and load position.The proposed method can be applied to independent modal control method in terms of system recognition and modeling,selection of optimal control point,mounting position of actuator,determination of control frequency,and estimation of active vibration suppression.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第11期97-104,共8页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51305142,61103170) 华侨大学引进人才科研启动资助项目(12BS217)
关键词 模态参数识别 主成分分析 振动时域响应数据 信号处理 modal parameter identification principal component analysis vibration time-domain response signal signal processing
  • 相关文献

参考文献12

  • 1纪晓东,钱稼茹,徐龙河.模拟环境激励下结构模态参数识别试验研究[J].清华大学学报(自然科学版),2006,46(6):769-772. 被引量:34
  • 2CONTI C,DEHOMBREUX P,VERLINDEN O,et al.Analysis of the performance of operational data analysis methods[J].Mechanical Systems and Signal Processing,1996,10(5):579-593.
  • 3PONCELET F,KERSCHEN G,GOLINVAL G C,et al.Output-only modal analysis using blind source separation techniques[J].Mechanical Systems and Signal Processing,2007,21(6):2335-2358.
  • 4ZHOU Wenliang,CHELIDZE D.Blind source separation based vibration mode identification[J].Mechanical Systems and Signal Processing,2007,21(8):3072-3087.
  • 5白俊卿,闫桂荣,王成.利用局部线性嵌入的模态识别[J].西安交通大学学报,2013,47(1):85-89. 被引量:16
  • 6JAMES G H Ⅲ,CARNE T G,LAUFFER J P.The natural excitation technique for modal parameter extraction from operating wind turbines,SAND92-1666,UC-261[R].Albuquerque,NM,USA:Sandia National Laboratories,1993.
  • 7FARRAR C R,JAMES G H.System identification from ambient vibration measurements on a bridge[J].Journal of Sound and Vibration,1997,205(1):1-18.
  • 8PEARSON K.On lines and planes of closest fit to systems of points in space[J].Philosophical Magazine,1901,2(11):559-572.
  • 9KERSCHEN G,GOLINVAL J C,VAKAKIS A,et al.The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems:an overview[J].Nonlinear Dynamics,2005,41(1/2/3):147-169.
  • 10HAN S,FEENY B.Application of proper orthogonal decomposition to structural vibration analysis[J].Mechanical Systems and Signal Processing,2003,17(5):989-1001.

二级参考文献13

  • 1Caicedo J M, Dyke S J, Johnson E A. Natural excitation technique and eigensystem realization algorithm for phase Ⅰ of the IASC-ASCE Benchmark problem: Simulated data [J]. J Eng Mechanics, 2004, 130:49 - 60.
  • 2Parloo E, Verboven P, Guillaume P, et al. Sensitivity-based operational mode shape normalisation[J]. Mechanical Systems and Signal Processing, 2002, 16(5) : 757 - 767.
  • 3Parloo E, Cauberghe B, Benedettini F, et al.Sensitivity-based operational mode shape normalization:Application to a bridge [J]. Mech Syst and Signal Processing, 2005, 19: 43- 55
  • 4James G H, Carne T G, Lauffer J P. The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Turbines[R]. No. SAND92-1666, UC-261. Sandia:Sandia National Laboratories, 1993.
  • 5Farrar C R, James G H. System identification from ambient vibration measurements on a bridge[J]. J Sound and Vibration, 1997, 205(1) : 1 - 18.
  • 6CONTI C, DEHOMBREUX P, VERLINDEN O, et al. Analysis of the performance of operational data analysis methods [J]. Mechanical Systems and Signal Processing, 1996, 10(5): 579-593.
  • 7KERSCHEN G, GOLINVAL J C, VAKAKIS A, et al. The method of proper orthogonal decomposition for dynamical characterization and order reduction of me- chanical systems: an overview [J]. Nonlinear Dynam- ics, 2005, 41(1/2/3): 147-169.
  • 8HAN S, FEENY B. Application of proper orthogonal decomposition to structural vibration analysis[J].Mechanical Systems and Signal Processing, 2003, 17 (5) : 989-1001.
  • 9LENAERTS V, KERSCHEN G, GOLINVAL J C. Proper orthogonal decomposition for model updating of non-linear mechanical systems J]. Mechanical Sys- tems and Signal Processing, 2001, 15(1): 31-43.
  • 10PONCELET F, KERSCHEN G, GOLINVAL G C, et al. Output-only modal analysis using blind source sep aration techniques [J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2335-2358.

共引文献48

同被引文献37

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部