期刊文献+

三维欧氏空间中的达布曲线 被引量:1

Darboux curves in 3-dimensional Euclidean space
下载PDF
导出
摘要 在三维欧氏空间中,经过空间曲线上的一点,且与该点的达布向量平行的直线称为曲线在此点的达布线。如果一条曲线和另一条曲线的点之间建立这样的一一对应关系,使得在对应点的达布线重合,则这2条曲线被称为达布曲线对,其中一条叫做另一条的达布侣线。主要研究了三维欧氏空间中达布曲线对的一些性质,并得到了如下结论:2条曲线的主法线平行的充分必要条件是它们的达布线平行;2条曲线的主法线平行,则它们在对应点的切向量成固定角;2条曲线为达布曲线对的充分必要条件是在对应点它们的从切平面重合。同时研究了三维欧氏空间中一条空间曲线具有达布侣线时它的曲率和挠率需要满足的关系。 In three dimensional Euclidean space, a straight line passing through a point of a space curve and paralleling to the Darboux vector of this point is called the Darboux line of the curve at this point. If the Darboux lines of two curves are coincident at the corresponding points, the curves are called a Darboux curve pair. Some characteristics for Darboux curve pair in three dimensional Euclidean space would be found in this paper, and we also get following results.. 1)The principal normal lines of two curves are parallel if and only if their Darboux lines are parallel; 2)If the principal normal lines of two curves are parallel, their tangent vector fields make a fixed angle; 3)Two curves are Darboux curve pair if and only if their tangent planes are same at the corresponding points. At the same time, we study the relation between the curvature and torsion of a space curve if it has a Darboux pair in three dimensional Euclidean space.
机构地区 东北大学理学院
出处 《沈阳师范大学学报(自然科学版)》 CAS 2013年第4期503-508,共6页 Journal of Shenyang Normal University:Natural Science Edition
基金 国家自然科学基金青年基金资助项目(11201056) 教育部基本科研业务青年教师科研启动基金资助项目(N110305007 N110305008)
关键词 从切平面 Frenet-Serret公式 达布向量 达布曲线 rectifying plane~ Frenet-Serret formulae Darboux vector Darboux curve
  • 相关文献

参考文献19

  • 1DOCARMO M P. Differential Geometry of Curves and Surfaces[M]. New Jerse. Prentice-Hall, 1976.
  • 2CHEN B Y. When does the position vector of a space curve always lie in its rectifying plane? [J]. Amer Math Monthly, 2003,22(10) : 147 - 152.
  • 3AHMAD A S. Maximal functions associated to surfaces of revolution on product domains[J]. J Math Anal Appl, 2009,351(1) :43 - 56.
  • 4MATTHIAS B, LARS S. On timelike willmore surfaces in Minkowski spaces[J]. J Geom Phys, 2011,61(10) : 1985 - 1995.
  • 5KENMOTSU K. Surfaces of revolution with periodic mean curvature[J]. J Tohoku Math, 2002,40(3):1 - 11.
  • 6KENMOTSU K. Surfaces of revolution with perscribed mean curvature[J]. J Tohoku Math, 1980,32(1):147 - 153.
  • 7KIM Y H, YOUN D W. Classification of ruled surfaces in Minkowski 3-space[J]. J Geom Phys, 2004,49(1):89 - 100.
  • 8LIU Huili. Curves in the light cone[J]. Contrib Alge Geom, 2004,45(1) :225 - 251.
  • 9YU Yanhua, YANG Yun, LIU Huiki. Centroaffine ruled surfaces in R3 [J]. J Math Anal Appl, 2010,365 (2) : 683 - 693.
  • 10OLVER P J. Differential invariants of surfaces[J]. J Differ Geom Appl, 2009,27(10):230 - 239.

二级参考文献21

  • 1魏悦姿.基等价与拓扑等价的关系探讨[J].大众科技,2005,7(4):150-151. 被引量:1
  • 2KELLEYJL-一般拓扑学[M].北京:科学技术出版社,1982:26-91.
  • 3SIMS B T. Fundamentals of Topology[ M]. New York: Macmillan, 1980:56-61.
  • 4Ahmad A S. Maximal functions associated to surfaces of revolution on product domains[J]. Journal of Mathematical Analysis and Applications, 2009,351 ( 1 ) : 43 - 56.
  • 5Matthias B, Lars S. On timelike willmore surfaces in Minkowski spaces [J ]. Journal of Geometry and Physics, 2011,61(10):1985 -1995.
  • 6Jun-ichi I, Sungwook L. Null curves in Minkowski 3-space [J]. International Electronic Journal of Geometry, 2008, 2:40 - 83.
  • 7Chen B Y. Black holes, marginally trapped surfaces and quasi-minimal surfaces [ J ]. Tamkang Journal of Mathematics, 2009,4 : 313 - 341.
  • 8Kim Y H, Youn D W. Classification of ruled surfaces in Minkowski 3 space[J]. Journal qfl Geometry and Pkysics, 2004,49(l) :89- 100.
  • 9Liu H L. Curves in the light cone [J ]. Contributions to Algebro and Geomegry , 2004,26:225 - 251.
  • 10Kenmotsu K. Surfaces of revolution with periodic mean curvature[J]. Journal of Tuhoku Metthematica, 2003,40 (3) :687- 696.

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部