期刊文献+

用于故障检测的集成核主分量分析

Ensemble kernel principal component analysis for fault detection
原文传递
导出
摘要 针对复杂环境下的多变量工业过程在线故障检测问题,提出基于集成核主分量分析的解决方法.该方法首先求出样本映射后的无限维空间的多组近似基,将主分量分析问题特征向量的解空间限定在近似基张成空间求解;然后集成特征向量和特征值,并计算Hotelling 2统计量和平方预报误差;最后据此判断检测结果.该方法对Tennessee Eastman过程故障检测样本进行测试,并与其他两种方法进行对比.测试结果表明了所提出方法的有效性. An ensemble principal component analysis is presented for online multivariable process fault detection on complicated conditions. In reproducing kernel Hilbert space(RKHS) spanned by the mapped samples, groups of basis(approximate) are found. Eigenvectors for principal component analysis problem are limited to the spaces spanned by approximate basis. The eigenvectors and eigenvalues in different subspace are integrated to make up for the approximation. Hotelling T2 and squared prediction error are calculated according to integrated eigenvectors and eigenvalues. Experiments on Tennessee Eastman is presented to demonstrate the effectiveness of the ensemble learning.
出处 《控制与决策》 EI CSCD 北大核心 2013年第11期1691-1696,共6页 Control and Decision
基金 国家自然科学基金项目(61271002) 江苏省自然科学基金项目(BK2011205)
关键词 集成学习 非监督学习 核主分量分析 故障检测 ensemble learning unsupervised learning kernel principal component analysis fault detection
  • 相关文献

参考文献11

  • 1范玉刚,李平,宋执环.基于特征样本的KPCA在故障诊断中的应用[J].控制与决策,2005,20(12):1415-1418. 被引量:20
  • 2Ge Z, Yang C, Song Z. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical Engineering Science, 2009, 64(9): 2245-2255.
  • 3Vapnik V N. Statistical learning theory[M]. New York: John Wiley and Sons, 1998: 169-175.
  • 4Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
  • 5Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 6d' Aspremont A, El Ghaoui L, Jordan M I, et al. A direct formulation for sparse PCA using semidefinite programming[J]. SIAM Review, 2007, 49(3): 434-448.
  • 7Xu H, Mannor S. Sparse algorithms are not stable: A no- free-lunch theorem[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(1): 187 - 193.
  • 8Opitz D, Maclin R. Popular ensemble methods: An empirical study[J]. J of Artificial Intelligence Research, 1999, 1106(257): 169-198.
  • 9Hansen L K, Salmon P. Neural network ensembles[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1990, 12 (10): 993-1001.
  • 10Braatz R D. TE process simulator software[EB/OL]. [2002- 04], http://brahms.scs.uiuc.edu.

二级参考文献8

  • 1Schlkopf B, Smola A, Müller K R. Nolinear Component Analysis as a Kernel Eigenvalue Problem[J]. Neural Computation, 1998, 10(5) : 1299-1319.
  • 2Kim Sang-Woon, John Oommen B. On Using Prototype Reduction Schemes to Optimize Kernel-based Nonlinear Subspace Methods[J]. Pattern Recognition, 2004, 37(2): 227-239.
  • 3Baudat G, Anouar F. Feature Vector Selection and Projection Using Kernels[J]. Neurocom puting, 2003, 55(1-2):21-38.
  • 4Lee Jong-Min, Chang Kvoo Yoo, Sang Wook Choi, et al. Nonlinear Process Monitoring Using Kernel Principal Component Analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234.
  • 5Downs J J, Vogel E F. A Plant-wide Industrial Process Control Problem[J]. Computers and Chemical Engineering, 1993,17(3):245-255.
  • 6Lyman P R, Georgakis C. Plant-wide Control of the Tennessee Eastman Problem[J]. Computers and Chemical Engineering, 1995,19(3) :321-331.
  • 7Leo H Chiang, Randy J Pell, Mary Beth Seasholtz. Exploring Process Data with the Use of Robust Outlier Detection Algorithms[J]. J of Process Control, 2003 , 13(5): 437-449.
  • 8李巍华,廖广兰,史铁林.核函数主元分析及其在齿轮故障诊断中的应用[J].机械工程学报,2003,39(8):65-70. 被引量:53

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部