期刊文献+

一种智能优化算法解质量评价方法 被引量:6

A method for the evaluation of solutions obtained from intelligent optimization algorithms
原文传递
导出
摘要 如何评价智能优化算法在有限时间内所得解的质量,是计算智能基础研究和工程实践中都亟待解决的问题.受序优化思想启发,针对连续优化问题,提出一种评价智能优化算法解质量的方法.首先利用聚类方法对解记录均匀化分区,然后根据适应度值分布计算对准概率作为解质量评价指标.通过对均匀采样、非均匀采样、粒子群算法和遗传算法的寻优结果进行实验表明了所提出方法的有效性. In the domain of computational intelligence and its applications, how to evaluate the quality of solutions obtained from intelligent optimization algorithms in finite time is an urgent problem to be solved. For continuous optimization problems, an approach is proposed to evaluate the solution quality of intelligent optimization. Firstly, clustering is employed to partition the solution-record. Then, based on the fitness distribution, an alignment probability is calculated as the quality measure. Experiments are performed on uniformly-distributed search, nonuniformly-distributed search, particle swarm optimization and genetic algorithm, respectively. The simulation results show the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2013年第11期1735-1740,共6页 Control and Decision
基金 国家自然科学基金青年基金项目(61105126) 高等学校博士点专项基金项目(20100201110031)
关键词 智能优化算法 解质量 聚类 序优化 intelligent optimization algorithms solution quality clustedng ordinal optimization
  • 相关文献

参考文献18

  • 1Rudolph G. Convergence analysis of canonical genetic algorithms[J]. IEEE Trans on Neural Network, 1994, 5(1): 96-101.
  • 2Sttitzle T, Dorigo M. A short convergence proof for a class of ACO algorithms[J]. IEEE Trans on Evolutionary Computation, 2002, 6(4): 358-365.
  • 3苏丽杰,聂义勇.旅行商问题的近优解评价方法[J].计算机科学,2004,31(10):310-311.
  • 4Ho Y C. An explanation of ordinal optimization: soft computing for hard problems[J]. Information Sciences, 1999, 113(3/4): 169-192.
  • 5Ho Y C, Zhao Q C, Jia Q S. Ordinal optimization: Soft optimization for hard problems[M]. New York: Springer Science, 2007: 7-56.
  • 6沈震.优化方法解的序性能分析[D].北京:清华大学信息科学技术学院,2009.
  • 7Hoos H H, Stiitzle T. Stochastic local search: Foundations and applications[M]. San Francisco: Morgan Kaufmann, 2004: 149-202.
  • 8Koza J R. Genetic programming: On the programming of computers by natural selection[M]. Cambridge: MIT Press, 1992: 191-204.
  • 9Jones T, Forrest S. Fitness distance correlation as a measure of problem difficulty for genetic algorithms[C]. Proc of the Sixth Int Conf on Genetic Algorithms. San Francisco: Morgan Kaufmann, 1995: 184-192.
  • 10Han J W, Kamber M, Pei J. Data mining: Concepts and techniques[M]. Waltham: Morgan Kaufmann, 2011: 443- 495.

二级参考文献5

  • 1[1]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[C].IPPS-98,Proceedings of the First Workshop on High Performance Date Mining,Orlando,Florida,USA,1998.
  • 2[2]Bradley P S,Mangasarian L.k-plane Clustering[J].Journal of Global Optimization,2000,16(1):23-32.
  • 3[3]Zhang T,Ramakrishnan R,Livny M.BIRCH: an efficient data clustering method for very large databases[A].Proceedings of 1996 ACM-SIGMOD Int.Conf.on Management of Data[C].Montreal,Quebec:1996.
  • 4[4]Jain Anil K.Algorithms for Clustering Data[M].Prentice Hall,1998.
  • 5[5]Ester M,Kriegel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C].Proceedings of the 2nd Int.Conf.on Knowledge Discovery and Data Mining,Portland,Dregon,1996.

共引文献13

同被引文献88

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部