期刊文献+

雷帕霉素对莱菔硫烷诱导人结肠癌细胞UGT1A同工酶及CYP3A4表达的调控 被引量:1

Regulations of rapamycin on gene expressions of UDP-glucuronosyltransferase 1A isforms and cytochrome P450 3A4 induced by sulforaphane in human colon cancer cells
原文传递
导出
摘要 目的以人结肠癌Caco-2细胞为模型,观察雷帕霉素(Rapa)对莱菔硫烷(SFN)诱导葡萄糖醛酸转移酶(UGT)1A1、UGT1A8、UGT1A10及细胞色素P450(CYP)3A4的调控,探讨Rapa对SFN化学预防效应的影响。方法实验分为对照组、10 nmol/L Rapa组、25μmol/L SFN组和25μmol/L SFN+10 nmol/L Rapa组。透射电镜观察细胞超微结构,Western blotting法测定微管相关蛋白1轻链3(LC3)和核因子E2 P45相关因子2(Nrf2)的表达,实时荧光定量PCR法测定UGT1A1、UGT1A8、UGT1A10及CYP3A4 mRNA的表达,免疫荧光法观察Nrf2的核内转位。结果透射电镜观察到10 nmol/L Rapa组、25μmol/L SFN组和25μmol/L SFN+10 nmol/L Rapa组细胞中自噬体及自噬溶酶体的形成;与对照组相比,25μmol/L SFN组、25μmol/L SFN+10 nmol/L Rapa组可诱导LC3-II蛋白及UGT1A1、UGT1A8、UGT1A10 mRNA的表达增加,诱导Nrf2蛋白的表达及核内转位增强,且25μmol/L SFN+10 nmol/L Rapa组的作用更显著;而10 nmol/L Rapa组、25μmol/L SFN组和25μmol/L SFN+10 nmol/L Rapa组中,CYP3A4 mRNA的表达均受到抑制。结论 Rapa可协同增强SFN对Caco-2细胞自噬效应的诱导;Rapa可能通过上调Nrf2信号通路,使SFN诱导UGT1A1、UGT1A8和UGT1A10表达增加,进而增强SFN的化学预防效应,同时未影响SFN对CYP3A4转录抑制效应。 Objective To observe the regulations of rapamycin (Rapa) on UDP-glucuronosyltransferase (UGT) 1A1, UGT1A8, UGT1A10 and cytochrome P450 (CYP) 3A4 induced by sulforaphane (SFN) in human colon cancer Caco-2 cells and to explore the influence of Rapa on chemopreventive effect induced by SFN. Methods Experiments were divided into control group, 10nmol/L Rapa group, 25μmol/L SFN group, and 25μmol/L SFN+10nmol/L Rapa group. The ultrastructures of Caco-2 cells were observed by transmission electron microscope. Western blotting was used to detect the expression of microtubule-associated protein 1 light chain 3 (LC3) and NF-E2-related factor 2 (Nrf2) proteins. Quantitative real-time RT-PCR was employed to examine the mRNA expression of UGT1A1, UGT1A8, UGT1A10 and CYP3A4. Immunocytochemistry was used to observe the nuclear localization of Nrf2. Results Autophagysomes and autolysosomes could be found in the 10nmol/L Rapa, 25μmol/L SFN and 25μmol/L SFN+10nmol/L Rapa groups by transmission electron microscope. In comparison to the control group, the proteins of LC3-II and Nrf2 and the mRNA of UGT1A1, UGT1A8 and UGT1A10 were increased significantly in the 25μmol/L SFN group and 25μmol/L SFN+10nmol/L Rapa group, and 25μmol/L SFN+10nmol/L Rapa group possessed the highest level. An intense nuclear labeling of Nrf2 could also be observed in SFN-treated cells, especially in 25μmol/L SFN+10nmol/L Rapa group. CYP3A4 mRNA expression could be inhibited in the 10nmol/L Rapa, 25μmol/L SFN and 25μmol/L SFN+10nmol/L Rapa groups. Conclusion Rapa can enhance SFN-induced autophagy, and improve SFN-induced mRNA expression of UGT1A1, UGT1A8 and UGT1A10 through the Nrf2 signaling pathway up-regulated by Rapa. There is no effect of Rapa on CYP3A4 mRNA down-regulated by SFN.
出处 《山东大学学报(医学版)》 CAS 北大核心 2013年第11期30-36,共7页 Journal of Shandong University:Health Sciences
基金 山东省自然科学基金(Y2008C115)
关键词 莱菔硫烷 雷帕霉素 葡萄糖醛酸转移酶1A 细胞色素P450 3A4 Sulforaphane Rapamycin Glucuronosyltransferase 1A Cytochrome P450 3A4
  • 相关文献

参考文献18

  • 1Juge N, Mithen R F, Traka M. Molecular basis for che- moprevention by sulforaphane: a comprehensive review[J]. Cell Mol Life Sci, 2007, 64(9) :1105-1127.
  • 2Herman-Antosiewicz A, Johnson D E, Singh S V. Sul- foraphane causes autophagy to inhibit release of cyto- chrome c and apoptosis in human prostate cancer cells [J].Cancer Res, 2006, 66( 11 ) :5828-5835.
  • 3Nishikawa T, Tsuno N H, Okaji Y, et al. Inhibition of autophagy potentiates sulforaphane-induced apoptosis in human colon cancer cells[J].Ann S urg Oncol, 2010, 17 (2) :592-602.
  • 4Kanematsu S, Uehara N, Miki H, et al. Autophagy inhi- bition enhances sulforaphane-induced apoptosis in human breast cancer cells [ J ]. Anticancer Res, 2010, 30 ( 9 ) : 3381-3390.
  • 5Zhang Y, Talalay P, Cho C G, et al. A major inducer of anticarcinogenic protective enzymes from broccoli: isola- tion and elucidation of structure [ J ]. Proc Natl Acad Sci U S A, 1992, 89(6) :2399-2403.
  • 6Gardner-Stephen D, Heydel J M, Goyal A, et al. Human PXR variants and their differential effects on the regulation of human UDP-glucuronosyltransferase gene expression [ J ]. Drug Metab Dispos, 2004, 32 ( 3 ) : 340-347.
  • 7Jakubikova J, Sedlak J, Mithen R, et al. Role of PI3K/ Akt and MEK/ERK signaling pathways in sulforaphane- and erucin-induced phase II enzymes and MRP2 transcrip- tion, G2/M arrest and cell death in Caco-2 cells[ J]. Bio- chem Pharmacol, 2005, 69 ( 11 ) : 1543-1552.
  • 8Mizushima N, Yoshimori T, Levine B. Methods in mam- malian autophagy research[J]. Cell, 2010, 140(3) :313- 326.
  • 9Mizushima N, Yoshimori T. How to interpret LC3 immu- noblotting [ J ]. Autophagy, 2007, 3 (6) :542-545.
  • 10Talalay P. Chemoprotection against cancer by induction of phase 2 enzymes[ J]. Biofactors, 2000, 12(1-4) :5- 11.

二级参考文献9

  • 1Malfatti MA,Felton JS.N-glucuronidation of 2-amino-1-methyl-6-phenyl imidazo[4,5-b]pyridine(PhIP)and Nhydroxy-PhIP by specific human UDP-glucuronosyltransferases[J].Carcinogensis,2001,22(7):1 087-1 093.
  • 2Vasen HF,Watson P,Mecklin JP,et al.New clinical criteria for hereditary nonpolyposis colorectal cancer(HNPCC,Lynch syndrome)proposed by the international collaborative group on HNPCC[J].Gastroenterology,1999,116(6):1 453-1 456.
  • 3Tukey RH,Strassburg CP.Human UDP-glucuronosyltransferases:metabolism,expression,and disease[J].Annu Rev Pharmacol Toxicol,2000,40(2):581-616.
  • 4Yan Q Li,David A Prentice,Monique L Howard,et al.Bilirubin and bile acids may modulate their own metabolism via regulating uridine diphosphate-glucuronosyltransferase expression in the rat[J].J Gastroenterol & Hepatol,2000,15:865-870.
  • 5Kaplan M,Hammerman C,Rubaltelli FF,et al.Hemolysis and bilirubin conjugation in association with UDPglucuronosyltransferase 1A1 promoter polymorphism[J].Hepatology,2002,35(4):905-911.
  • 6Gregory PA,Lewinsky RH,Gardner-Stephen DA,et al.Coordinate regulation of the human UDP-glucuronosyl transferase 1A8,1A9,and 1A10 genes by hepatocyte nuclear factor 1 alpha and the caudal-related homeodomain protein 2[J].Mol Pharmacol,2004,65(4):953-963.
  • 7Ando Y,Ueoka H,Sygiyama T,et al.Polymorphism of UDP-glucuronosyl transferase and pharmacoki netics of irinotecan[J].Ther Drug Monit,2002,24(1):111-116.
  • 8Strassburg CP,Strassburg A,Nguyen N,et al.Regulation and function of family 1 and family 2 UDP-glucuronosyltransferase genes(UGT1A,UGT2B)in human oesophagus[J].Biochem J,1999,338(pt 2):489-498.
  • 9Strassburg CP,Tukey RH.Genetic multiplicity of the human UDP-glucuronosyltransferases and regulation in the gastrointestinal tract[J].Mol Pharmacol,2001,59(3):405-414.

共引文献1

同被引文献37

  • 1Chow W H, Dong L M, Devesa S S. Epidemiology and risk factors for kidney cancer[J]. Nat Rev Urol, 2010, 7 (5) : 245-257.
  • 2Jemal A, Bray F, Center M M, et al. Global cancer sta- tistics[J]. CA Cancer J Clin, 2011, 61(2) : 69-90.
  • 3Conaway C C, Yang Y M, Chung F L. Isothiocyanates as cancer chemopreventive agents: their biological activi- ties and Metabolism in rodents and humans [ J ]. Curr Drug Metab, 2002, 3(3): 233-255.
  • 4Szaefer H, Krajka-Kulniak V, Bartoszek A, et al. Mod- ulation of carcinogen metabolizing cytochromes P450 in rat liver and kidney by cabbage and sauerkraut juices: comparison with the effects of indole-3-carbinol and phen- ethyl isothiocyanate [ J ]. Phytother Res, 2012, 26 ( 8 ) : 1148-1155.
  • 5Saw C L, Cintr6n M, Wu T Y, et al. Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxi- dant genes and synergism with isothiocyanates[ J]. Biop- harm Drug Dispos, 2011, 32(5) : 289-300.
  • 6Kim S H, Sehrawat A, Singh S V. Dietary chemopreven- tative benzyl isothiocyanate inhibits breast cancer stem cells in vitro and in vivo [ J ]. Cancer Prey Res ( Phila), 2013, 6(8) : 782-790.
  • 7Gerhauser C. Epigenetic impact of dietary isothiocyanates in cancer chemoprevention [J]. Curt Opin Clin Nutr Metab Care, 2013, 16(4) : 405-410.
  • 8Melchini A, Traka M H, Catania S, et al. Antiprolifera-tire activity of the dietary isothiocyanate erucin, a bioac- five compound from cruciferous vegetables, on human prostate cancer cells [J]. Nutr Cancer, 2013, 65 ( 1 ) : 132-138.
  • 9Lee J E, Mmist6 S, Spiegelman D, et al. Intakes of fruit, vegetables, and carotenoids and renal cell cancer risk: a pooled analysis of 13 prospective studies [J]. Canc- er Epidemiol Biomarkers Prev, 2009, 18(6) : 1730-1739.
  • 10Moher D, Liberati A, Tetzlaff J, et al. Preferred repor- ting items for systematic reviews and meta-analyses: the PRISMA statement[J]. Int J Surg, 2010, 8(5) : 336- 341.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部