期刊文献+

基于大涡模拟评估GRAPES模式对对流边界层的模拟性能 被引量:6

Assessment of the simulative performance of the GRAPES model on the convective boundary layer based on the large eddy simulations
下载PDF
导出
摘要 为检验GRAPES半拉格朗日动力框架在大涡尺度上的模拟性能,为未来发展千米及其以下高分辨尺度的数值模式奠定基础,并构造GRAPES大涡模式以检验和发展边界层湍流参数化提供科学工具。通过在GRAPES模式中加入Smagorinsky-Lilly小尺度湍涡参数化,并将模式分辨率提高至50 m,构建GRAPES大涡模式(GRAPES_LES),以便分析GRAPES模式在大涡尺度上的适用性。同时利用广泛应用的已有大涡模式UCLA_LES作为参考,通过对干对流边界层湍流的模拟分析及与UCLA_LES模拟结果的对比,得出如下主要结论:GRAPES半拉格朗日动力框架能够模拟出与已有的大涡模式相似的边界层湍流特征;同时,通过分析也证明GRAPES存在由于采用半拉格朗日平流计算而带来过度耗散的问题:当使用相同的滤波尺度(Smagorinsky常数)时,GRAPES_LES模拟出的速度场更为平滑,小尺度湍流结构过于光滑,通过对湍流能量的能谱分析更清楚地表明了这一点。进一步,对不同的Smagorinsky常数(对应不同的滤波尺度)进行了敏感性试验,表明可以通过改变滤波尺度,有效地缓解半拉格朗日框架隐含的耗散问题,得到更接近UCLA_LES所模拟的湍流特征。 This paper devotes to examining the GRAPES semi-Lagrangian dynamic core at the large-eddy scale, which may lay a foundation for the future development of kilometer-scale and even more high resolution numerical models. Another purpose of this research is to develop GRAPES large-eddy simulation model, which will provide a scientific tool for testing and developing the boundary layer turbulence parameterization. In order to analyze the ability of the GRAPES at large eddy scale, the Smagorinsky-Lilly subgrid closure is introduced into the GRAPES dynamic core, and model resolution is increased to be 50 m.A widely applied large eddy simulation model (UCLA_LES model) is applied here as a reference. Through simulating the turbulence in a dry convective boundary layer, the following conclusions are obtained: The GRAPES semi-Lagrangian dynamic core is able to show a reasonable performance at the large-eddy scale by using a smaller filtering scale comparing with the UCLA_LES. Also, it is revealed that there exists excessive diffusion in the GRAPES semi-Lagrangian model due mainly to the interpolation at upstream points of Lagrangian advection. When using the same filtering scale (Smagorinsky constant) as UCLA_LES, the velocity field simulated by the GRAPES_LES exhibits much smoother distribution, and the fine turbulent structures look not so obvious compared with those by the UCLA_LES. This is also confirmed by analyzing the turbulent energy spectrum. Moreover, sensitivity experiments by using the different Smagorinsky constants demonstrate that smaller filtering scale can compensate for the implicit dissipation in the semi-Lagrangian model, and can produce a good convective turbulence simulation.
作者 江川 沈学顺
出处 《气象学报》 CAS CSCD 北大核心 2013年第5期879-890,共12页 Acta Meteorologica Sinica
基金 国家"十二五"科技支撑项目"全球中期数值预报技术开发及应用"(2012BAC22B02) 973课题"突发性强对流天气演变机理和监测预报技术研究"(2013CB430106) 国家自然科学基金创新群体项目(41221064)
关键词 大涡模拟 半拉格朗日动力框架 隐含耗散 GRAPES模式 对流边界层 Large eddy simulation, Semi-Lagrangian dynamical core, Implicit diffusion, GRAPES model, Convective boundary layer
  • 相关文献

参考文献35

  • 1John D.McCalpin,林峰.半拉格朗日平流内在耗散的定量分析[J].气象科技,1989,17(6):32-38. 被引量:1
  • 2王雪梅.用大涡模式研究对流边界层湍流[J].气候与环境研究,2001,6(4):473-477. 被引量:2
  • 3吴涧,蒋维楣.对流边界层的大涡模拟研究[J].气象科学,1999,19(1):33-41. 被引量:8
  • 4郑永骏,金之雁,陈德辉.半隐式半拉格朗日动力框架的动能谱分析[J].气象学报,2008,66(2):143-157. 被引量:26
  • 5Agee E, Gluhovsky A. 1999. LES model sensitivities to domains, grids, and large-eddy timeseales. J Atmos Sei, 56(4) : 599 -604.
  • 6Cullen M J P, Brown A R. 2009. Large eddy simulation of the at- mosphere on various scales. Philos Trans Roy Soc A.. Math Phys Eng Sci, 367(1899) : 2947-2956.
  • 7Cuxart J, Bougeault P, Redelsperger J L. 2000. A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart J Roy Meteor Soc, 126(562) : 1-30.
  • 8Deardorff J W. 1970. Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convec- tion. J Atmos Sci, 27(8) : 1211-1218.
  • 9Deardorff J W. 1972. Numerical investigation of neutral and unsta- ble planetary boundary layers. J Atmos Sci, 29(1) : 91-115.
  • 10Deardorff J W. 1973. The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J Fluid Eng, 95:429-438.

二级参考文献38

  • 1蔡旭晖,陈家宜.对流边界层中泡状结构的大涡模拟研究[J].大气科学,1997,21(2):223-230. 被引量:10
  • 2Batchelor G. 1969, Computation of the energy spectrum in homogeneous, two dimensional turbulence. Phys Fluids Suppl II, 12:233- 239
  • 3Boer G J, Shepherd T G. 1983. Large-scale tow-dimensional turbulence in the atmosphere. J Atmos Sci, 40 : 164-184
  • 4Boggess A, Nareowieh F J. 2002. A First Course in Wavelet with Fourier Analysis. Beijing: Publishing House of Electronies Industry, 117-120
  • 5Charney J G. 1947. The dynamics of long waves in a baroclinic westerly current. J Meteor, 4:135-162
  • 6CharneyJ G. 1971. C-eostrophic turbulence. J Atmos Sci, 28: 1087- 1095
  • 7Cho J Y N, NeweU R E, Barrick J D. 1999a. Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 1. Climatology. J Geophys Res, 104 : 5697- 5716
  • 8Cho J Y N, Newell R E, Barrick J D. 1999b. Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vortical modes. J Geophys Res, 104:16297-16308
  • 9Denis B J, Cote J, Laprise R. 2002. Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the Discrete Cosine Transform(DCT). Mon Wea Rev, 130 : 1812-1829
  • 10Dewan E M. 1979. Stratospheric spectra resembling turbulence. Science, 402 : 832-835

共引文献33

同被引文献106

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部