期刊文献+

具有半交换自同态的环 被引量:2

Rings with Semicommutative Endomorphisms
下载PDF
导出
摘要 通过引入半交换自同态的概念,研究具有半交换自同态的环(简称α-sc环).对任何a,b∈R,如果α(a)b=0,有aRα(b)=0,则环R的一个自同态α称为半交换的.给出α-sc环与相关环的关系及α-sc环的一些扩张性质,证明了:1)设α是约化环R的自同态,则R是α-sc环当且仅当R[x]/〈xn〉是α珔-sc环,其中〈xn〉是由xn生成的理想,n为任何正整数;2)设α是环R的自同构,R是对称的右Ore环,则R是α-sc环当且仅当R的经典右商环Q(R)是α珔-sc环. We investigated the rings with semicommutative endomorphisms,referred to as the α-sc ring,by means of introducing the notion of semicommutative endomorphisms.A endomorphism α of a ring R is called semicommutative if α(a)b=0 implies aRα(b)=0 for any a,b∈R.We discussed the relations between α-sc rings and related rings and present some extensions of α-sc rings.It is proved that:1) if α is a endomorphism of a reduced ring R,then R is α-sc if and only if R[x]/〈x^n〉 is a--sc,where 〈x^n〉is the ideal by x^n generated in R and n is any positive integer; 2) if α is an automorphism of R,R is a symmetric right Ore ring,then R is α-sc if and only if the classical right quotient ring Q(R)of R is a--sc.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第6期997-1003,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11071097) 江苏省自然科学基金(批准号:11KJB110007)
关键词 半交换自同态 α-sc环 α-shifting环 环的扩张 semicommutative endomorphism α-sc ring α-shifting ring extensions of ring
  • 相关文献

参考文献10

  • 1Kim N K, Lee Y. Extensions of Reversible Rings [J]. J Pure Appl Algebra, 2003, 185(1/2/3) : 207-223.
  • 2Kwak T K. Extensions of Extended Symmetric Rings [J]. Bull Korean Math Soc, 2007, 44(4): 777-788.
  • 3Baser M, Hong C Y, Kwak T K. On Extended Reversible Rings [J]. Algebra Colloq, 2009, 16(1) : 37-48.
  • 4Baser M, Harmanci A, Kwak T K. Generalized Semicommutative Rings and Their Extensions [J]. Bull Korean Math Soc, 2008, 45(2): 285-297.
  • 5Baser M, Kaynarca F, Kwak T K. Ring Endomorphisms with the Reversible Condition [J]. Commun Korean Math Soc, 2010, 25(3): 349-364.
  • 6Krempa J. Some Examples of Reduced Rings [J]. Algebra Colloq, 1996, 3(4): 289-300.
  • 7Hong C Y, Kim N K, Kwak T K. Ore Extensions of Baer and PP-Rings [J]. J Pure Appl Algebra, 2000, 151(3) : 215-226.
  • 8Hong C Y, Kwak T K, Rizvi S T. Extensions of Generalized Armendariz Rings [J]. Algebra Colloq, 2006, 13(2) : 253-266.
  • 9Hong C Y, Kim N K, Kwak T K. On Skew Armendariz Rings [J]. Comm Algebra, 2003, 31(1) : 103-122.
  • 10GANG Yang. Semicommutative and Reduced Rings [J]. Vietnam J Math, 2007, 35(3) : 309-315.

同被引文献20

  • 1Cohn P M. Reversible rings[J]. Bull London Math Soc, 1999, 31(6) : 641 -648.
  • 2Lambek J. On the representation of modules by sheaves of factor modules [ J ]. Canad Math Bull, 1971, 14 (3) : 359 - 368.
  • 3Kim N K, Lee Y. Extensions of Reversible Rings[Jl. J Pure Appl Algebra, 2003, 185:207 -223.
  • 4Hong C Y, Kim N K, Kwak T K. Ore extensions of Baer and p. p. - rings [ J ]. J Pure Appl Algebra, 2000, 151:215 -226.
  • 5Baser M, Hong C Y, Kwak T K. On extended reversible rings[ J]. Algebra Colloq, 2009, 16( 1 ) : 37 -48.
  • 6Kwak T K. Extensions of extended symmetric rings[J]. Bull Korean Math Soc, 2007, 44(4) : 777 -788.
  • 7Baser M, Harmanci A, Kwak T K. Generalized semicommutative rings and their extensions [ J ]. Bull Korean Math Soc. 2008. 45 (2) .. 285 - 297.
  • 8Pourtaherian H, Rakhimov I S. On skew version of reversible rings [ J ]. Inter J Pure Appl Math, 2011,73 (3) : 267 - 280.
  • 9Baser M, Kaynarca F, Kwak T K. Ring Endomorphisms with the reversible condition [ J ]. Commun Korean Math Soc, 2010, 25(3) : 349 -364.
  • 10Hashemi E, Moussavi A. Polynomial extensions of quasi -Baer rings [ J]. Acta Math Hungar, 2005, 107 (3) : 207 - 224.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部