期刊文献+

一类发展包含的端点问题 被引量:1

Extremal Problems of a Class of Evolution Inclusions
下载PDF
导出
摘要 考虑一类反周期发展包含端点解的存在性.当集值函数G(t,x)取有界紧凸值,且为关于变量t可测的、关于变量x连续时,利用Tolstonogov端点连续选择定理和Schauder不动点定理,证明了端点反周期解的存在性. We proved that the existence ot anti-periodic extremal solutions when the mutilfuction G(t,r) takes a bounded,weakly compact,convex value,and is measurable about variable t,and continuous about variable x,using the Tolstonogov extremal continuous selection theorem and the Schauder fixed point theory.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第6期1095-1097,共3页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11171350)
关键词 发展包含 端点解 不动点 evolution inclusion extremal solution fixed point
  • 相关文献

参考文献11

  • 1Okochi H. On the Existence of Anti-periodic Solutions to a Nonlinear Evolution Equation Associated with Odd Subdifferential Operators [J]. J Funct Anal, 1990, 91(2) : 246-258.
  • 2LIU Qing. Existence of Anti-periodic Mild Solutions for Semilinear Evolution Equations [J]. J Math Anal Appl, 2011, 377(1): 110-120.
  • 3WANG Yan. Antiperiodic Solutions for Dissipative Evolution Equations [J]. Math Comput Modelling, 2010, 51: 715-721.
  • 4CHEN Yu-qing, WANG Xiang-dong, XU Hai-xiang. Anti-periodic Solutions for Semilinear Evolution Equations [J]. J Math AnalAppl, 2002, 273(2): 627-636.
  • 5CHEN Yu-qing, Nieto J J, O'Regan D. Anti-periodic Solutions for Evolution Equations Associated with Maximal Monotone Mappings [J]. Applied Mathematics Letters, 2011, 24(3): 302-307.
  • 6张育梅,程毅,王靖华.Banach空间中发展方程的反周期边值问题[J].吉林大学学报(理学版),2012,50(4):715-716. 被引量:5
  • 7程毅,华宏图,从福仲.Banach空间中发展包含的反周期问题[J].吉林大学学报(理学版),2013,51(4):626-628. 被引量:2
  • 8Zeidler E. Nonlinear Functional Analysis and Its Applications[M]. Berlin: Spring-Verlag, 1984.
  • 9Zeidler E. Nonlinear Functional Analysis and Its Applications. Part Ⅱ : Nonlinear Monotone Operators [M]. New York: Springer-Verlag, 1990.
  • 10Aubinj P, Cellina A. Differential Inclusion [M]. Berlin: Springer-Verlag, 1984.

二级参考文献17

  • 1LIU Qing. Existence of Anti-periodic Mild Solutions for Semilinear Evolution Equations [ J]. J Math Anal Appl, 2011, 377(1) : 110-120.
  • 2LIU Zhen-hai. Anti-periodic Solutions to Nonlinear Evolution Equations [J]. J Funct Anal, 2010, 258(6) : 2026-2033.
  • 3WANG Yan. Antiperiodic Solutions for Dissipative Evolution Equations [ J ]. Math Comput Modelling, 2010, 51 (5/6) : 715-721.
  • 4WU Rui. The Existence of T-Anti-periodic Solutions [ J ]. Applied Mathematics Letters, 2010, 23 (9) : 984-987.
  • 5CHEN Yu-qing, WANG Xiang-dong, XU Hai-xiang. Anti-periodic Solutions for Semilinear Evolution Equations [ J 1. J Math Anal Appl, 2002, 273(2) : 627-636.
  • 6CHEN Yu-qing. Anti-periodic Solutions for Semilinear Evolution Equations [J]. J Math Anal Appl, 2006, 315( 1 ): 337-348.
  • 7Zeidler E. Nonlinear Functional Analysis and Its Applications [ M ]. Berlin: Springer-Verlag, 1984.
  • 8Okochi H. On the Existence of Anti-periodic Solutions to a Nonlinear Evolution Equation Associated with Odd SuhdifferentialOperators [J]. J Funct Anal, 1990, 91(2): 246- 258.
  • 9LIU Qing. Existence of Anti periodic Mild Solutions for Semilinear Evolution Equations [J]. J Math Anal Appl, 2011, 377(1): 110-120.
  • 10WANG Yan. Antiperiodic Solutions for Dissipative Evolution Equations [J]. Math Comput Modelling, 2010, 51(5/6): 715-721.

共引文献5

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部