期刊文献+

一类带有互相包含洞的区域与简单区域间拓扑关系的表示 被引量:2

Representation of Topological Relations between the Region with Holes of Mutual Inclusion and the Simple Region
下载PDF
导出
摘要 基于带洞区域间的拓扑关系建立适合表示该类拓扑关系的12-交集矩阵,通过给出的相应约束条件得到一类带有互相包含洞的区域与简单区域间的53种拓扑关系,并通过53种拓扑关系图验证了53种拓扑关系均是可实现的,最后证明了12-交集模型中基本关系的完备性和互斥性. We built 12-intersection matrix model which appropriately represents these topological relations,and gave the relevantly restricted conditions,showed that there are at most 53 possible topological relations between the region with holes of mutual inclusion and a simple region by programs.Furthermore,we checked up that all these 53 topological relations are possible.We proved that these topological relations are exclusive and complete.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第6期1107-1110,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11071026 61170092 61133011 60973088 60973089 61103091) 吉林省科技发展计划项目(批准号:20130522110JH)
关键词 人工智能 带洞区域 12-交集模型 artificial intelligence the region with holes 12-intersections matrix model
  • 相关文献

参考文献8

  • 1WANG Sheng sheng, LIU Da-you. Knowledge Representation and Reasoning for Qualitative Spatial Change [J]. Knowledge-Based Systems, 2012, 30: 161-171.
  • 2WANG Shengsheng LIU Dayou.An Efficient Method for Calculating Qualitative Spatial Relations[J].Chinese Journal of Electronics,2009,18(1):42-46. 被引量:7
  • 3Scott J, Lee L H. Designing the Low-Power M* CORETM Architecture [C]//IEEE Power Driven Microarchitecture Workshop. Piscataway: IEEE Computer Society, 1998: 29-33.
  • 4Egenhofer M J, Franzosa R D. Point-Set Topological Spatial Relation [J]. International Journal of Geographical Information System, 1991, 5(2): 161-174.
  • 5欧阳继红,霍林林,刘大有,富倩.能表达带洞区域拓扑关系的扩展9-交集模型[J].吉林大学学报(工学版),2009,39(6):1595-1600. 被引量:21
  • 6Clarke B L. A Calculus of Individuals Based on "Connection" [J]. Notre Dame Journal of Formal I.ogic, 1981, 22(3) : 204-218.
  • 7Randell D, Cohn A. Modelling Topological and Metrical Properties in Physical Processes [C]//Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann Publishers Inc, 1989: 357-368.
  • 8LI Jian, OUYANG Ji-hong, WANG Zhen-xin. Representation for Topological Relations of Four Simple Regions [C]//The 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD' 12). Piscataway: IEEE Computer Society, 2012: 2961-2965.

二级参考文献10

  • 1欧阳继红,刘大有,胡鹤,陈博宇.一种基于模糊集的混合空间推理方法[J].吉林大学学报(理学版),2004,42(4):565-569. 被引量:7
  • 2虞强源,刘大有,欧阳继红.基于区间值模糊集的模糊区域拓扑关系模型[J].电子学报,2005,33(1):186-189. 被引量:13
  • 3欧阳继红,欧阳丹彤,刘大有.基于模糊集及RCC理论的区域移动模型[J].吉林大学学报(工学版),2007,37(3):591-594. 被引量:5
  • 4Randell D A, Cui Z,Cohn A G. A spatial logic based on regions and connection[C]//In:Nebel B,Ricb C, Swartout WR, eds. Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning. Sanmateo: Morgan Kaufmann Publishers, 1992 : 165-176.
  • 5Egenhofer M J, Franzosa R Do Point-set topological spatial relations [J].International Journal of Geographical Information Systems, 1991,5(2) :161-174.
  • 6Egenhofer M J, Herring J. Categorizing binary topological relationships between regions,lines and points in geographical database[R]. Department of Surveying Engineering, University of Maine, 1991.
  • 7Egenhofer M J, Clementini E, Di Feliee P. Topological relations between regions with holes[J]. International Journal of Geographical Information Systems, 1994,8(2):129-144.
  • 8Markus Schneider, Thomas Behr. Topological relationships between complex spatial objects [C] // ACM Transactions on Database Systems, 2006,31(1) :39-81.
  • 9Li San-jiang. A complete classification of topological relations using the 9-intersection method[J]. International Journal of Geographical Information Science, 2006,20(6) :589-610.
  • 10Egenhofer M J, Vasardani M. Spatial reasoning with a hole[C]//Conference on Spatial Information Theory(COSIT'07), Melbourne, Australia, Lecture Notes in Computer Science. Heidelberg: Springe Berlin, 2007: 303-320.

共引文献24

同被引文献33

  • 1刘大有,胡鹤,王生生,谢琦.时空推理研究进展[J].软件学报,2004,15(8):1141-1149. 被引量:34
  • 2Scott J, Lee I. H, Arends J, et al. Designing the Low-Power M · CORETM Architecture [C]/IEEE Power Driven Microarchiteeture Workshop. Piscataway.. IEEE, 1998: 145-150.
  • 3Frank A. MAPQUERY.. Data Base Query Language for Retrieval of Geometric Data and Their Graphical Representation [J]. ACM SIGGRAPH Computer Graphics, 1982, 16(3): 199-207.
  • 4Randell D A, CUI Zhan, Cohn A G. A Spatial Logic Based on Regions and Connection [C]//Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning. San Francisco.. Morgan Kaufmann Publishers, 1992.. 165-176.
  • 5Clarke B L. A Calculus of Individuals Based on 'Connect'[J]. Notre Dame Journal of Formal Logic, 1981, 22(3) : 204-218.
  • 6Egenhofer M J, Franzosa R D. Point-Set Topological Spatial Relations [J]. International Journal of Geographical Information Science, 1991, 5(2): 161-174.
  • 7Egenhofer M J, Vasardani M. Spatial Reasoning with a Hole [J]. Spatial Information Theory Lecture Notes in Computer Science, 2007, 4736: 303-320.
  • 8CLARKE B L. Individuals and Points[J].Notre Dame Journal of Formal Logic, 1985, 26(1):61-75.
  • 9CLARKE B L. A Calculus of Individuals Based on "Connection"[J].Notre Dame Journal of Formal Logic, 1981, 22(3):204-218.
  • 10EGENHOFER M J, FRANZOSAR D. Point-set Topological Spatial Relations[J].International Journal of Geographical Information Systems, 1991, 5(2):161-174.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部