期刊文献+

线性互补问题的序列凸近似方法 被引量:1

Sequential Convex Approximation Approach to Linear Complementarity Problems
下载PDF
导出
摘要 线性互补问题是一类有着广泛应用背景的重要数学问题,本文主要讨论其求解方法.本文首先将线性互补问题等价转化为目标函数含有DC函数(两个凸函数的差函数)的优化问题,然后对该DC问题目标函数的第二部分凸函数进行线性化,得到一列凸近似子问题.本文证明该列子问题的解的聚点是线性互补问题的稳定点. The main purpose of this work is to solve the linear complementarity problem, which is an important mathematical problem with wide applications. The linear complementarity problem is firstly reformulated into an optimization problem with a DC (difference of convex) objective function, then the second term in the DC objective function is linearized in order to produce a sequence of convex sub - problems. It is demonstrated later that all the cluster points of optimal solutions of these convex sub - problems are stationary points of the original linear complementarity problem.
作者 初丽
出处 《吉林师范大学学报(自然科学版)》 2013年第4期117-119,共3页 Journal of Jilin Normal University:Natural Science Edition
关键词 线性互补问题 序列凸近似方法 linear complementarity problem sequential convex approximation approach
  • 相关文献

参考文献3

  • 1Cottle R W, Pang J S, Stone R,The Linear Complementarity Problem[ M ]: Boston: Academic Press, 1992:
  • 2Hong L, Yang Y, Zhang L: Sequential convex approximations to joint chance constrained programs: A monte carlo approach [ J ]: Operations Research ,2010 : 16 - 17:
  • 3Rockafellar R,Wets R B: Variational Analysis[ M]: New York: Springer Verlag,1998:

同被引文献10

  • 1Christoph Helmberg, Francois Oustry. Bundle methods to minimize the maximum eigenvalue function.[ J ]. Handbook of Semidefinite Progamming, 2000,27:307 - 337.
  • 2Claudia Sagastizabal, Mikhail Solodov. An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or filter [ J ]. SIAM J. Optimization,2005,16 ( I ) : 146 - 169.
  • 3Oustry F. , Lemarchal C. Nonsmooth algorithms to solve semidefinite programs [ J ]. Society for Industrial and Applied Mathematics Philadelphia, 2000,57 - 77.
  • 4J. Frederic Bonnans, J. Charles Gilbert, Claude Lemareehal, et al. Sagatizabal. Bundle methods. The quest of descent. Numerical Optimization, 2003,117 - 136.
  • 5Claudia Sagastizabal, Mikhail Solodov. An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or filter[ J]. SIAM J. Optimization ,2005,16 (1) :146 - 169.
  • 6Ladislav Lukgan, Jan Vicek. A bundle-Newton method for nonsmooth unconstrained minimization [ J ]. The Mathematical Programming Society, 1998,373 - 391.
  • 7Antonio Frangioni. Generalized bundle methods[ J]. SIAM J. OPTIM ,2001,13 (1) :117 - 156.
  • 8L. Lukgan, J. Vicek. Globally Convergent Variable Metric Method for Convex Nonsmooth Unconstrained Minimization. Journal of optimization theory and applications, 1999,102 (3) :593 - 613.
  • 9K. Kiwiel. A bundle Bregman proximal method for convex nondifferentiable optimization, Math. Program. , 1999,85,241 - 258.
  • 10周茂袁,王秀丽,李雪艳.特征函数的一种新解释及其应用[J].吉林师范大学学报(自然科学版),2008,29(2):37-38. 被引量:9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部