期刊文献+

开放信息抽取技术的现状研究 被引量:3

On the State-of-the-art Technology of Open Information Extraction
下载PDF
导出
摘要 如何高效地自动理解网络上出现的海量文本信息,日益成为了个严峻的考验。美国华盛顿大学图灵中心提出的开放信息抽取,是一个有效的解决方法。它具有领域的独立性,无监督抽取,对大量文本的可伸缩性等特点。该论文首先介绍了开放信息抽取系统的主要功能,然后详细论述了三个主要的开放信息抽取系统的特点、组成部分以及优缺点,接着分析了开放信息抽取系统的改进方法和发展趋势。最后对未来进行展望。 How to efficiently and automatically understand the mass text information appearing on the Web is increasingly becoming a se- vere issue. Introduced by Turing Center of University Washington, Open Information Extraction (OIE} is an effective method with char- acteristics of domain-independent, unsupervised extraction, scalability to large amounts of text. This paper firstly introduces the main functions of OIE system, and then discusses in detail three major open information extraction systems about their features, components, and advantages and disadvantages, and then analyzes the improvement methods and trends of OIE. Finally, the future development of the OIE technologies is explored.
作者 刘振 张智雄
出处 《情报杂志》 CSSCI 北大核心 2013年第11期145-148,186,共5页 Journal of Intelligence
基金 国家自然科学基金"基于语言网络的文本主题中心度计算方法研究"(编号:61075047) 国家"十二五"科技支撑计划项目"面向外文科技文献信息的知识组织体系建设与应用示范"(编号:2011BAH10B00)课题五"信息资源自动处理 智能检索与STKOS应用服务集成"的研究成果之一
关键词 开放信息抽取 无监督抽取 关系短语 论元抽取 语义角色标注 开放语言学习 Open Information Extraction(OIE) unsupervised extraction relation phrase argument extraction semantic role labeling open language learning
  • 相关文献

参考文献9

  • 1张智雄,孙坦,吴振新,等.知识抽取的概念、思路、方法和趋势研究[R].北京:中国科学院文献情报中心,2008.
  • 2Michele Banko,Michael J Cafarella,Stephen Soderl,Matt Broad-head ,Oren Etzioni. Open Information Extraction from the Web[C]. In Proceedings of Conference on Arti - cial Intelligence,2007:2670-2676.
  • 3Anthony Fader,Stephen Soderland,Oren Etzioni. Identifying Re-lations for Open Information Extraction[C]. In Proceedings ofthe Conference of Empirical Methods in Natural Language Pro-cessing, 2011.
  • 4Oren Etzioni,Anthony Fader,Janara Christensen,Stephen Soder-land,Mausam. Open Information Extraction: The Second Gener-ation[C]. In Proceedings of the Conference on Artificial Intelli-gence, 2011:3-10.
  • 5Fei Wu,Daniel S Weld. Open Information Extraction UsingWikipedia[C]. In Proceedings of the 48th Annual Meeting of theAssociation for Computational Linguistics, 2010 : 118-127.
  • 6F Wu ,Weld D S. Open Information Extraction Using Wikipedia[J]. ACL,2010:118-127.
  • 7Alan Akbik ,Alexander Loser. KRAKEN: N-ary Facts in OpenInformation Extraction[J]. http://www. aclweb. org/antholo-gy/W/W12/Wl2-30. pdf#page = 62.
  • 8Mausam,Michael Schmitz,Robert Bart,Stephen Soderland,OrenEtzioni. Open Language Learning for Information Extraction[J].https://homes, cs. Washington, edu/ - mausam/papers/emn-lpl2a. pdf.
  • 9Alan Akbik,Jurgen Bro. Wanderlust: Extracting Semantic Rela-tions from Natural Language Text Using Dependency GrammarPatterns[C]. In 1st Workshop on Semantic Search at 18th. WW-WW Conference ,2009.

同被引文献85

引证文献3

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部